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This supplemental material consists of the following sections: Section A presents general deriva-

tions of Euler equations for both deterministic and stochastic finite dependence. It also extends

Proposition 2 in the main text to allow for stochastic sequences of choices (see Proposition A1).

Sections B and C present all proofs of the lemmas and propositions presented in the main paper:

Section B focuses on the identification results, while Section C shows the proofs of the asymptotic

properties of the ECCP estimator. Section D explains the standard CCP approach implemented

in the Monte Carlo experiment to estimate the model parameters. Finally, Section E extends the

Monte Carlo study presented in Section 6 of the main paper by investigating how the biases in the

parameter estimates pass through to biases in countefactuals calculations.

A General ECCP Equation Derivation

In this section, we offer a general derivation of Euler equations in conditional choice probabilities

relying first on deterministic finite dependence as defined in Section 3, and then exploring stochastic

sequences of choices. We also present Proposition A1, which extends the identification result in

Proposition 2 (presented in the main text) to allow for stochastic finite dependence. Recall that

finite dependence is not a behavioral assumption (whether based on deterministic or stochastic

sequences); it is rather a property that the state transition process may or may not satisfy in the

data.
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A.1 ECCP Equation Under Deterministic Finite Dependence

Arcidiacono and Miller (2011) show that the conditional value functions, va, can be represented

by functions of flow payoffs and conditional choice probabilities for any sequence of future choices,

optimal or not. To derive such a representation, begin with an arbitrary initial state ωmt. Consider

a sequence of actions from t to t+ τ (where τ ≥ 1). Suppose the initial choice at time period t is

a, and let j denote another element of the choice set A. Let ad ∈ A denote the d−th choice in the

sequence following a, and define jd ∈ A similarly.

Recall equation (11) in the main paper, rewritten below for convenience. It stacks vectors

across rows of the individual state k and absorbs the aggregate state ωmt into mt subscripts:

πamt + βeVam,t,t+1 = Vmt − βF k
amtVmt+1 − ψamt.

We then substitute for Vmt+1 using equation (11) again, using a1 as the action instead of a:

πamt + βeVam,t,t+1 = Vmt − ψamt − βF k
amt

(
πa1mt+1 + βeVa1,m,t+1,t+2 + ψa1mt+1

)
−β2F k

amtF
k
a1mt+1Vmt+2.

Repeated substitution of Vmt+d above leads to:

πamt + βeVam,t,t+1 = Vmt − ψamt

−F k
amt

[
τ∑
d=1

βdΛamtd

(
πadmt+d + βeVad,m,t+d,t+d+1 + ψadmt+d

)]
−βτ+1F k

amtΛamt,τ+1Vmt+τ+1, (A1)

where the matrices Λamtd are defined recursively:

Λamtd = I, for d = 1,

Λamtd = Λamt,d−1 F
k
ad−1mt+d−1, for d ≥ 2.

Next, finite dependence allows us to eliminate the Vmt+τ+1, resulting in an ECCP equation

that forms the basis of our identification arguments. Recall Definition 2 in Section 3: Given τ -

period finite dependence, for a pair of actions (a, j), we can construct sequences (a, a1, . . . , aτ ) and

(j, j1, . . . , jτ ) such that1

F k
amtF

k
a1mt+1 . . . F

k
aτmt+τ = F k

jmtF
k
j1mt+1 . . . F

k
jτmt+τ ,

i.e.,

F k
amtΛamt,τ+1 = F k

jmtΛjmt,τ+1. (A2)

1Recall that the terms in the sequences depend on the particular initial pair of actions (a, j) chosen.
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We then difference equation (A1) across the two sequences of actions. Because of (A2), the

last term cancels, and the result is equation (27).

A.2 ECCP Equation Under Stochastic Finite Dependence

Consider now a known mixing sequence of actions from t to t + τ (where τ ≥ 1). Suppose the

initial choice at t is action a. For the next period, t+1, let αat+1(kimt+1, ωmt+1) be a vector on RA+1

with elements αalt+1(kimt+1, ωmt+1), l ∈ A, such that
∑A

l=0 α
a
lt+1(kimt+1, ωmt+1) = 1. Each element

αalt+1(kimt+1, ωmt+1) of the vector αat+1 can be interpreted as the weight given to action l ∈ A in

period t + 1 at state (kimt, ωmt) after the initial choice a at t. For deterministic sequences, one

element of the vector αat+1 equals one and the others equal zero. For probabilistic sequences, all

elements of αat+1 are positive an add up to one. More generally, the mixing may involve negative

weights, provided that they sum up to one (Arcidiacono and Miller, 2019). For the other time

periods, d = 2, ..., τ , take the sequence of weight choices in a similar way, αat+d(kimt+d, ωmt+d). In

this section, we abuse terminology and use the terms “mixing” and “stochastic” interchangeably.

It is useful to represent the weight choices in matrix notation. Define the diagonal matrix

αalmt = diag {αalt (k, ωmt) ; k ∈ K}, for l ∈ A and any time period t. In words, αalmt is a K × K

matrix that collects the individual terms αalt(kimt, ωmt) for all possible values of k. Note that

αalt(kimt, ωmt) is one element of the vector αat (kimt, ωmt), as defined in the previous paragraph.

Clearly, because the mixing requires
∑A

l=0 α
a
lt(kimt, ωmt) = 1, we have that

∑A
l=0 α

a
lmt = IK , where

IK is the K ×K identity matrix.

Now, recall equation (11). For any initial choice a, take a mixing αat+1(kimt+1, ωmt+1) over

choices in A at t+ 1, and replace Vmt+1 in (11) to get

πamt + βeVam,t,t+1 = Vmt − ψamt − βF k
amt

[
A∑
l=0

αalmt+1

(
πlmt+1 + βeVlm,t+1,t+2 + ψlmt+1

)]

−β2F k
amt

[
A∑
l=0

αalmt+1F
k
lmt+1

]
Vmt+2.

Next, we follow the steps outlined in Section A.1 of this Appendix. Repeated substitution of

Vmt+d above leads to:

πamt + βeVam,t,t+1 = Vmt − ψamt

−βF k
amt

[
τ∑
d=1

βd−1Λam,t,d

A∑
l=0

αalmt+d
(
πlmt+d + βeVlm,t+d,t+d+1 + ψlmt+d

)]
−βτ+1F k

amtΛam,t,τ+1Vmt+τ+1, (A3)
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where the observed (estimable) matrices Λam,t,d are defined recursively:

Λam,t,d = I, for d = 1

Λam,t,d = Λam,t,d−1

[∑A
l=0 α

a
lmt+d−1F

k
lmt+d−1

]
, for d ≥ 2.

(A4)

As before, we make use of finite dependence to eliminate the Vmt+τ+1. First, we extend Defini-

tion 2 in Section 3 to stochastic sequences of choices:

Definition 1. (Stochastic Finite Dependence) A pair of choices a and j satisfies stochastic τ -period

finite dependence if there exist two sequences of mixings starting at a and j such that, for all t,

F k
amtΛam,t,τ+1 = F k

jmtΛjm,t,τ+1, (A5)

where Λam,t,τ+1 is defined in (A4).

Under this condition, Vmt+τ+1 is eliminated when we difference equation (A3) across two mixing

sequences of actions, starting respectively at a and j. Recalling that π = π + ξ, we then obtain

the ECCP regression equation:

ψjmt − ψamt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
jmtΛjm,t,dα

j
lmt+d − F

k
amtΛam,t,dα

a
lmt+d

]
ψlmt+d

= πamt − πjmt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
πlmt+d

+ uajmt, (A6)

where the econometric error term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = ξamt − ξjmt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
ξlmt+d,

and

ẽVajmt = β
(
eVam,t,t+1 − eVjm,t,t+1

)
+ β

τ∑
d=1

A∑
l=0

βd
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
eVlm,t+d,t+d+1.

We can now extend Proposition 2 to identify payoff parameters under the assumption of general

stochastic finite dependence.

Proposition A1. Suppose Assumptions 1 and 2 hold. Assume τ -period stochastic finite de-

pendence holds for the agent-level transition process F k, with τ < T . Assume also a linear-

in-parameters flow payoff: π (a, k, w) = x (a, k, w) θ, where θ ∈ RP and x (a, k, w) is a known
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1 × P vector function. Let Xamt be a K × P matrix with elements given by x (a, k, wmt), so that

πamt = Xamtθ, and define

X̃ajmt ≡ Xamt −Xjmt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
Xlmt+d. (A7)

Denote the K × 1 vector on the left hand side of (A6) by Yajmt. Stack equation (A6) for all Q

feasible combinations of actions (a, j) ∈ A to obtain the following equation

Ymt = X̃mtθ + umt, (A8)

where the QK× 1 vectors Ymt and umt stack Yajmt and uajmt, respectively, and the QK×P matrix

X̃mt stacks X̃ajmt. Let Zmt be an L × QK matrix of instrumental variables with L ≥ P . The

parameter θ is identified provided E [Zmtumt] = 0 and rank(E[ZmtX̃mt]) = P .

The proof of Proposition A1 is identical to the proof of Proposition 2 and is therefore omitted.

In fact, Proposition 2 is a special case of Proposition A1, when finite dependence is restricted to

satisfy deterministic sequences of actions.

Proposition A1 can be used to extend previous empirical applications exploring stochastic finite

dependence (e.g., Ransom, 2019) to incorporate serially correlated unobservable states, measure-

ment error, and endogeneity problems. It can also serve as the basis for identification arguments

in future applications featuring all these attributes. Evidently, the same set of issues discussed

extensively in Section 4 involving deterministic finite dependence (regarding instrument validity,

limitations of and extensions to the ECCP approach) applies here as well.

B Proofs: Identification

B.1 Proof of Proposition 1

Assume single-action τ -period dependence holds for action J . Then, equation (27) simplifies to

(ψjmt − ψamt) +
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd ψJmt+d

= πamt − πjmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d + uajmt, (B1)

where the matrix ΛJmtd is defined recursively

ΛJmtd = I, for d = 1

ΛJmtd = ΛJmt,d−1 F
k
Jmt+d−1, for d ≥ 2,
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and the unobservable term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = (ξamt − ξjmt)− (F k
jmt − F k

amt)
τ∑
d=1

βdΛJmtd ξJmt+d, (B2)

ẽVajmt = β
(
eVam,t,t+1 − eVjm,t,t+1

)
−
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd e
V
Jm,t+d,t+d+1. (B3)

For any known (and comformable) function h (zmt), multiply both sides of (B1) and take the

expectation. We eliminate the error terms ξ̃ajmt and ẽVajmt by Assumption 3.(ii)–(iii). Then,

E

[
h (zmt)

(
(ψjmt − ψamt) +

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd ψJmt+d

)]

= E

[
h (zmt)

(
πamt − πjmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

)]
, (B4)

where the expectations are taken over (zmt, wmt, ..., wmt+τ ).

The LHS of (B4) can be recovered from the data (using the results of Lemma C1, in Appendix

C.4). Then, for any two primitives π and π′,

E

[
h (zmt)

(
πamt − πjmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

)]

= E

[
h (zmt)

(
π′amt − π′jmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd π
′
Jmt+d

)]
.

By the completeness condition (Assumption 3.(i)),

πamt − πjmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

= π′amt − π′jmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd π
′
Jmt+d, (B5)

for almost all (wmt, . . . , wmt+τ ). Consider (B5) for j = J . Because πJ (k, w) is known for all

observed states (k, w), we conclude that πamt = π′amt almost surely.

B.2 Proof of Proposition 2

Equation (31) is a linear regression equation, and E [Zmtuajmt] = 0 and rank(E[ZmtX̃ajmt]) = P

are the standard orthogonality and rank conditions, respectively, for parameter identification.
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B.3 Proof of Lemma 1

We omit the subscripts i and m to simplify notation. Suppose Assumption 4 holds.

(i) From the definition of eh
(
a, k, ωt, ω

∗
t+1

)
,

E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|It
]

= E

[∑
k′

eh
(
k′, ωt, ω

∗
t+1

)
F k (k′|a, k, wt) |It

]

= E

[∑
k′

(∫
ω′
h (k′, ω′) dF ω (ω′|ωt)− h

(
k′, ω∗t+1

))
F k (k′|a, k, wt) |It

]

=
∑
k′

∫
ω′
h (k′, ω′) dF ω (ω′|ωt)F k (k′|a, k, wt)

−
∑
k′

∫
ω∗t+1

h
(
k′, ω∗t+1

)
dF ω

(
ω∗t+1|ωt

)
F k (k′|a, k, wt)

= 0.

(ii) By the law of iterated expectations,

E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|zt
]

= E
[
E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|It
]
|zt
]

= 0,

where the second equality follows from (i).

Note also that, given that the time-t information set It includes current and past variables,

Lemma 1 also implies that E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|zt−d

]
= 0, for all a, k and any d ≥ 1. (And in

particular, E
[
eh
(
a, k, ωt+d, ω

∗
t+d+1

)
|zt
]

= 0.)

(iii) Next, fix a and k, and simplify notation further by defining eh
(
a, kt, ωt, ω

∗
t+1

)
= eht+1. Note

that not only current and past states (k, ω) belong to the information set available to agents It,
but also past prediction errors. I.e.,

{
eht , e

h
t−1, ..., e

h
1

}
∈ It. We can then let zt = eht−d for d ≥ 1

and use result (ii) above to establish that E
[
eht−de

h
t

]
= 0. Thus, expectational errors are serially

uncorrelated.

C Proofs: Estimation and Inference

C.1 Proof of Lemma 2

Given that {aimt, kimt : i = 1, ..., N} are i.i.d. conditional on ωmt, the first part of the Lemma (the

almost sure convergence) follows by an immediate application of the Law of Large Numbers for

exchangeable random variables (see Hall and Heyde (1980), p. 202, (7.1)).

The second part is obtained in three steps. First, Horvath and Yandell (1988) presents a Law

of Iterated Logarithm (LIL) applied to both kernel and nearest neighbor estimators for conditional

probabilities (see their Corollary 5.1). The i.i.d. sample in Horvath and Yandell (1988) can be
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replaced by the assumption that the sample is i.i.d. conditional on the common shocks following

the arguments in Souza-Rodrigues (2016).2 The LIL then holds for almost all ωmt. Finally, it

is straightforward to adapt the kernel regression results to simple frequency estimators (i.e., use

simple indicator functions as kernel functions).

C.2 Proof of Proposition 3

Recall that gmt (θ) = h (zmt)umt(θ, δmt). Define the following functions:

g̃M (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

gmt (θ) , (C1)

and

Q̃M (θ) = g̃M (θ)′WM g̃M (θ) . (C2)

The criterion function Q̃M (θ) is similar to Q̂M (θ) but makes use of δmt instead of the estimator

δ̂mt. I.e., Q̃M (θ) is an unfeasible GMM criterion function, while Q̂M (θ) is feasible. The unfeasible

estimator θ̃M (approximately) minimizes Q̃M (θ) over Θ.

A straightforward application of Theorem 2.6 in Newey and McFadden (1994) proves that the

unfeasible estimator θ̃M is a consistent estimator of θ0. To show that the feasible estimator θ̂M

is consistent as well, it suffices to show that Q̂M (θ) converges in probability to Q̃M (θ) uniformly

over Θ. To do so, define the difference vmt = ĝmt (θ)− gmt (θ), and

vM (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

vmt (θ) .

Then,

Q̂M (θ) = [g̃M (θ) + vM (θ)]′WM [g̃M (θ) + vM (θ)]

= Q̃M (θ) + vM (θ)′WMvM (θ) + 2g̃M (θ)′WMvM (θ) .

Given Condition 2(ii), it suffices to show that both g̃M (θ) and vM (θ) converge to zero in probability

uniformly over Θ.

By Conditions 2(i),(iii),(v), and (vi), g̃M (θ) satisfies the uniform Weak Law of Large Numbers,

and therefore converges in probability to zero uniformly over Θ as M →∞. Now consider vM (θ).

Note that

vmt = h (zmt)
(
umt(θ, δ̂mt)− umt(θ, δmt)

)
,

2Souza-Rodrigues (2016) establishes the asymptotic properties of the kernel regression estimator for cross-
sectional data in the presence of common shocks.
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and take a mean-value expansion of umt(θ, δ̂mt) about δmt:

umt(θ, δ̂mt)− umt(θ, δmt) = ∇δumt(θ, δ
∗
mt)
(
δ̂mt − δmt

)
,

where δ∗mt lies between δ̂mt and δmt. Next, note that

E

[
sup
θ∈Θ
‖vM (θ)‖

]
≤ 1

M (T − τ)

M,(T−τ)∑
m=1,t=1

E

[
sup
θ∈Θ
‖h (zmt)∇δumt(θ, δ

∗
mt)‖

∥∥∥δ̂mt − δmt∥∥∥]

≤ B

M (T − τ)

M,(T−τ)∑
m=1,t=1

E

[∥∥∥δ̂mt − δmt∥∥∥2
]

(C3)

where the second inequality follows from the Cauchy–Schwarz inequality and Condition 2(vii).

Because
∥∥∥δ̂mt − δmt∥∥∥ p→ 0, as N →∞, by Lemma 2, we have that E

[∥∥∥δ̂mt − δmt∥∥∥2
]

= o (1), and,

so, the right-hand-side of (C3) converges to zero as N →∞ for all M and T . We conclude that

sup
θ∈Θ

∥∥∥Q̂M (θ)− Q̃M (θ)
∥∥∥ p→ 0, as (M,N)→∞.

C.3 Proof of Proposition 4.

By standard arguments (see Theorem 3.2 in Newey and McFadden (1994), the unfeasible estimator

θ̃M satisfies

θ̃M − θ0 = − [G′WG]
−1

G′Wg(θ0) + op

(
1/
√
M
)
, (C4)

and is asymptotically normal, √
M
(
θ̃M − θ0

)
p→ N (0,V) ,

under Conditions 3(i)-(iv). The asymptotic distribution of the feasible estimator θ̂M is the same

as the asymptotic distribution of the unfeasible θ̃M provided∥∥∥θ̂M − θ̃M∥∥∥ = op

(
1√
M

)
.

From (C4), it is clear that

θ̃M − θ̂M = [G′WG]
−1

G′WvM(θ0) + op

(
1/
√
M
)
.

So, ∥∥∥θ̂M − θ̃M∥∥∥ ≤ ∥∥∥[G′WG]
−1
∥∥∥ ‖G‖ ‖W‖ ‖vM(θ0)‖+ op

(
1/
√
M
)
.
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Note that

E [‖vM (θ0)‖] ≤ B

M (T − τ)

M,(T−τ)∑
m=1,t=1

(
E

[∥∥∥δ̂mt − δmt∥∥∥2
])1/2

by Condition 2(vii). Because E

[∥∥∥δ̂mt − δmt∥∥∥2
]

= O
(

log logN
N

)
, by Lemma 2, we have that ‖vM(θ0)‖ =

Op

(√
log logN

N

)
, which implies

√
M
∥∥∥θ̂M − θ̃M∥∥∥ = Op

(√
M log logN

N

)
= op (1) ,

provided M log logN
N

→ 0.

C.4 Additional Result

The next lemma provides a result that is used in Proposition 1. Proposition 1 claims that, for a

known function f of δτmt = (δmt, ..., δmt+τ ), quantities of the type E [h (zmt) f (δτmt)] can be recovered

from the data. (More specifically, f (δτmt) in the proof of Proposition 1 corresponds to the term in

parenthesis on the LHS of equation (B4).)

Lemma C1. Suppose the vector (wmt, zmt) is i.i.d. across markets m. Assume

E
[
‖h (zmt)∇δf (δτmt)‖

2] ≤ C <∞.

Then
1

M

M∑
m=1

h (zmt) f(δ̂
τ

mt)
p→ E [h (zmt) f(δτmt)] ,

as (M,N)→∞.3

Proof. First, note that

1

M

M∑
m=1

h (zmt) f(δ̂
τ

mt) =
1

M

M∑
m=1

h (zmt) f (δτmt) +
1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]
.

The first term on the right-hand-side converges in probability to E [h (zmt) f (δm)] as M →∞ by

the Weak Law of Large Numbers. Applying a mean-value expansion on the second term, we get

1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]

=
1

M

M∑
m=1

h (zmt)∇δf (δτ∗mt)
[
δ̂
τ

mt − δτmt
]

3The same result applies if (wmt, zmt) is stationary and ergodic, if we average the term [h (zmt) f(δ̂
τ

mt)] over
T − τ time periods, and if we take (T,N)→∞.
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where δτ∗mt lies between δ̂
τ

mt and δτmt. Next, note that

E
[∥∥∥h (zmt)∇δf(δτ∗mt)

[
δ̂
τ

mt − δτmt
]∥∥∥] ≤ (

E
[
‖h (zmt)∇δf (δτ∗mt)‖

2]E [∥∥∥δ̂τmt − δτmt∥∥∥2
])1/2

≤ C

(
E

[∥∥∥δ̂τmt − δτmt∥∥∥2
])1/2

,

where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality

from the regularity condition E
[
‖h (zmt)∇δf (δτmt)‖

2] ≤ C <∞. By Lemma 2, E

[∥∥∥δ̂τmt − δτmt∥∥∥2
]

converges to zero as N →∞, which implies

1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]

p→ 0, as N →∞, for all M .

D The Standard CCP Estimator

Here we explain the standard CCP approach implemented in the Monte Carlo experiment to

estimate the model parameters. By “standard,” we mean involving a full specification of how

all state variables evolve, and not relying on Euler equations. Following Hotz and Miller (1993),

this CCP approach avoids the computational burden of solving the dynamic problem within the

estimation algorithm associated with Rust’s (1987) nested fixed point approach.

The estimation here follows Section 2 of Kalouptsidi, Scott, and Souza-Rodrigues (2019) and

we refer readers to it for details. Estimation begins by estimating choice probabilities conditional

on individual states and the modeled exogenous state variable, i.e., p (k, w). Let Fb represent the

stochastic matrix for observable state variables (k, w) conditional on buying the product, and let

Fnb represent the stochastic matrix when the action is not buying the product. Kalouptsidi, Scott,

and Souza-Rodrigues (2019) shows that

πb = Aπnb + b,

where A = (I − βFb) (I − βFnb)−1 and b = Aψnb − ψb, where ψa stacks ψa (p (k, w)) across all

values of (k, w).

We estimate the payoff parameters θ using a Minimum Distance estimator, i.e., by minimizing

the L2 norm of

πb (θ)− Aπnb (θ)− b.
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Given the parameterization, this is achieved by a linear regression of the vector b on the matrix[
(1− Ak) ,w

]
,

where 1 is a vector of ones, k is a dummy vector equal to one in states where the good is owned,

and w is the vector of prices.4

E Monte Carlo: Counterfactual

In the Monte Carlo presented in Section 6, we consider only the estimation of the parameters of

agents’ utility function. Typically, applied researchers are also interested in the outcomes of policy

simulations or counterfactuals. In this section, we extend the Monte Carlo experiment in Section

6 to study counterfactual simulations. Specifically, we consider how the biases in the parameter

estimates pass through to biases in countefactuals. Before doing so, we must consider the question

of how to do counterfactuals within the ECCP framework.

Much of the ECCP approach’s appeal comes from the fact that it takes seriously the possibility

that the econometrician might be facing important measurement issues; e.g., some market-level

state variables might not be observed, and/or it might be difficult to specify how they evolve.

However, when doing counterfactuals, researchers typically solve for a new equilibrium of the

model, which normally involves fully specifying all the relevant state variables and how they evolve.

Thus, prima facie, ECCP estimation seems to be at odds with doing counterfactual simulations.

A counterfactual is a function of the model parameters, and sometimes that function does not

depend (or depends only minimally) on the presence of unobservable variables or on the precise

specification of how state variables evolve. Therefore, the modeling issues that motivate the

ECCP approach need not undermine the use of parameter estimates for counterfactual analysis.

De Groote and Verboven (2019) provide a clear example. They use an ECCP estimator to estimate

the rate of time discounting of Belgian households in deciding whether to install solar photovoltaic

systems (the ECCP estimator allows them to flexibly include demand shocks and avoid specifying

a process for how government policy evolved). They find that households’ estimated discount rate

is considerably lower than the interest rate that the Belgian government can borrow at. As they

argue, this disparity means that it would be more cost effective for the government to support solar

PV installations with up-front payments, rather than the ongoing payments that the government

actually used. This conclusion follows intuitively from the disparity in discount rates and plausibly

is not affected in an important way by how government policy and unobservable states evolve. The

conclusion, however, may be highly sensitive to biases in the estimation of the discount factor. In

4Note that one can estimate the model parameters either by minimizing the distance between b and πb(θ) −
Aπnb(θ), or by minimizing the distance between the (nonparametrically) estimated CCP, p, and the CCP generated
by the model, p(θ). See Pesendorfer and Schmidt-Dengler (2008).
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other words, the estimation of a mis-specified model may crucially affect policy recommendations.

In what follows, we show that some counterfactuals – specifically, long-run demand elasticities

from our durable good demand model – are robust to the omission of unobservable state variables

that are present in the data generating process. Or more specifically, long-run demand elasticities

are well approximated by a model in which we set ξ at its long-run mean (i.e., ξ = 0). Furthermore,

we show that the biases that result from leaving the unobservable shocks out of the counterfactual

simulations can be smaller than the biases that result from using an estimation approach that is

not robust to their presence.

We perform both a real and feasible counterfactuals for the durable good demand model. Our

real counterfactuals take the parameter estimates from various estimations presented in Section 6

and plug them into a counterfactual that uses the true data generating process (notably including

the true law of motion for the unobservable demand shock ξmt). That is, the real counterfactuals

rely on our understanding of an unobservable that an econometrician who was not simulating the

data would not have access to. Our feasible counterfactuals, in contrast, simulate a simple model

that an econometrician could easily implement: a model that sets ξ = 0.5

The counterfactual we consider is an increase in the mean price level (formally, we increase

γ0 by .01; see Table 1 in Section 6), and we calculate the long-run change in the demand level.

That is, we calculate the unconditional probability of purchase Pr (a = b) in the steady state after

solving the consumer’s dynamic problem. We present this counterfactual in the form of a long-run

demand elasticity, i.e., the ratio of the percentage change in the probability of purchase to the

percentage change in the long-run price.

Table E1 shows the counterfactuals from the ECCP (OLS and IV) and standard CCP estimators

based on the parameter estimates from the above simulations with M = 160 and T = 160. A first

observation is that the real and feasible counterfactuals at the true parameters differ by a factor

of about 10%. Second, consistent with the biases in the underlying parameter estimates, we find

that the ECCP IV estimates yield very little bias in the counterfactuals relative to the true values

while the other estimators result in substantially biased counterfactuals. Furthermore, the biases

in the long-run elasticities from the OLS and standard CCP estimators (whether we consider the

real or feasible versions) are larger than the gap between the real and feasible estimators.

Evidently, counterfactuals are not always robust to setting ξ at its unconditional mean. The

broader point we make in this section is that robustness to the presence of unobserved shocks

can be assessed through a procedure similar to what we do here. That is, when researchers are

concerned about the presence of unobservables, they might adopt a robust estimation approach

that delivers consistent estimates of important parameters despite the unobservables. Then, when

it comes to counterfactual simulations, they can perform the simulation in several ways to assess

5To solve the feasible counterfactual, we need to specify how the exogenous state variable wmt evolves. We
consider the residual from the pricing equation (39) as the econometrician can measure it. I.e., w = γ0 + γ1z + ν,
where ν = γ2ξ + εw. So, we calculate the true evolution of ν given the underlying processes and assume the
econometrician is able to estimate it.
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whether and how the results of interest might be sensitive to the presence of unobservables and

how they evolve.

Table E1: Sample size, structure and bias

ECCP Standard
True value OLS IV CCP

Real LRE -1.106 Mean Estimate 60.15 -1.104 0.01471
Relative Bias -5540% -0.1561% -101.3%
SD 16.62 0.04227 0.02545
RMSE 63.48 0.04231 1.121

Feasible LRE -1.022 Mean Estimate -1.187e4 -1.064 0.03888
Relative Bias 1.162e6% 4.114% -103.8%
SD 1.382e6 0.1184 0.06774
RMSE 1.382e6 0.1256 1.063

Notes: 5000 replications with sample structure M = T = 160. SD is the standard
deviation across replications. RMSE is root-mean squared error.

Relative Bias is bias as percentage of the true parameter.
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