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This Supplemental Material consists of the following sections: Section B presents
the data sources, explains the construction of the variables used in the empirical
application, and shows some summary statistics. Section C discusses the imple-
mentation of the empirical exercise based on a dynamic model of farmers land
use decisions.

Appendix B: Data and summary statistics

Table B1 lists our data sources. All are publicly available for download save DataQuick’s
land values. Our main sample is based on a sub-grid of the Cropland Data Layer (CDL), a
high-resolution (30–56m) annual land-use data that covers the entire contiguous United
States since 2008. We took a 840m subgrid of the CDL within those counties appear-
ing in our DataQuick database.1 DataQuick collects transaction data from about 85%
of US counties and reports the associated price, acreage, parties involved, field address,
and other characteristics. The coordinates of the centroids of transacted parcels in the
DataQuick database are known. To assign transacted parcels a land use, we associate a
parcel with the nearest point in the CDL grid.

A total of 91,198 farms were transacted between 2008 to 2013 based on DataQuick.
However, we dropped nonstandard transactions and outliers from the data. First, be-
cause we are interested in the agricultural value of land (not residential value), we only
consider transactions of parcels for which the municipal assessment assigned zero value
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1The 840m grid scale was chosen for two reasons. First, it provides comprehensive coverage (i.e., most
large agricultural fields are sampled) without providing too many repeated points within any given parcel.
Second, the CDL data changed from a 56m to a 30m grid, and the 840 grid size allows us to match points
across years where the grid size changed while matching centers of pixels within 1m of each other. The CDL
features crop-level land cover information. See Scott (2013) for how “crops” and “noncrops” are defined.
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Table B1. Data sources.

Dataset Description Source

Cropland data layer Land cover http://nassgeodata.gmu.edu/CropScape/
DataQuick Real estate transactions,

assessments
DataQuick

US counties County boundaries http://www.census.gov/cgi-bin/geo/
shapefiles2010/layers.cgi

GAEZ database Protected land, soil type http://www.gaez.iiasa.ac.at/
SRTM Topographical—Altitude

and slope
http://dds.cr.usgs.gov/srtm/

NASS quick stats Yields, prices, pasture
rental rates

http://www.nass.usda.gov/Quick_Stats/

ERS Operating costs http://www.ers.usda.gov/data-products/
commodity-costs-and-returns.aspx

LandScan global
population

Urban center locations
and populations

https://landscan.ornl.gov/landscan-datasets

to buildings and structures. Additionally, we drop transactions featuring multi-parcels,
transactions between family members, properties held in trust, and properties owned
by companies. Finally, we drop transactions with extreme prices: those with value per
acre greater than $50,000, total transaction price greater than $10,000,000, or total trans-
action price less than $60; these are considered measurement error. After applying the
selection criteria, there remained 24,643 observations (transactions).

To obtain a rich set of field characteristics, we use soil categories from the Global
Agro-Ecological Zones database and information on protected land from the World
Database on Protected Areas. Protected land was dropped from all analyses. The NASA’s
Shuttle Radar Topography Mission (SRTM) database provides detailed topographical in-
formation. The raw data consist of high-resolution (approx. 30m) altitudes, from which
we calculated slope and aspect, all important determinants of how land is used. Char-
acteristics such as slopes and soil categories are assigned to fields/parcels using nearest
neighbor interpolation.

To derive a measure of nearby developed property values, we find the five restau-
rants nearest to a field, and we average their appraised property values. For each field,
we also compute the distance to the nearest urban center with a population of at least
100,000. Location of urban centers and the population distribution were obtained from
the LandScan 2006 Global Population Database, developed by Oak Ridge National Lab-
oratory for the United States Department of Defense.

Finally, we use various public databases on agricultural production and costs from
the USDA. Crop returns are based on information on yields, prices received, and oper-
ating expenditures; noncrop returns are based on more sparse information on pasture
land rental rates (see Scott (2013)). The final dataset goes from 2010 to 2013 for 515 coun-
ties and from 2008 to 2013 for 132 counties.

Table B2 presents some summary statistics. Table B3 compares the transacted fields
(in DataQuick) to all US fields (in the CDL). Overall, the two sets of fields look similar. In
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https://landscan.ornl.gov/landscan-datasets
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Table B2. Summary statistics.

Statistics Mean Std Dev Min Max

In cropland 0�147 0�354 0 1
Switch to crops 0�0162 0�126 0 1
Keep crops 0�849 0�358 0 1
Crop returns ($) 228 112 43 701
Slope (grade) 0�049 0�063 0 0�702
Altitude (m) 371 497 −6 3514
Distance to urban center (km) 79�8 63�7 1�22 362
Nearest commercial land value ($/acre) 159,000 792,000 738 73,369,656
Land value ($/acre) 7940 9720 5�23 50,000

Note: A slope of 1 refers to a perfect incline and a slope of 0 refers to perfectly horizontal land.

particular, the probability of keeping (switching to) crops is very similar across the two
datasets.

Appendix C: Dynamic land use model and estimation

C.1 Model with unobserved states

As mentioned in the main text, we augment the empirical model by allowing for unob-
served market states, following Scott (2013). The per period payoff becomes

π(a�kimt�wmt� sim�εimt)

= θ0(a�kimt� sim)+ θ1Z(a�wmt)+ ξ(a�kimt�wmt� sim)+ εimt� (C1)

where ξ(a�k�w� s) captures unobservable variation in returns, and the idiosyncratic
shock εit has a logistic distribution. (Without loss of generality, ξ(a�k�w� s) is mean-zero
for all (a�k�w� s).) We construct returns Zamt ≡Z(a�wmt) using county-year information
(expected prices and realized yields for major US crops, as well as USDA cost estimates)

Table B3. Dataquick vs. CDL data–Time invariant characteristics.

Mean by Dataset DataQuick CDL

In cropland 0�147 0�136
Switch to crops 0�0162 0�0123
Keep crops 0�849 0�824
Crop returns ($) 228 241
Slope (grade) 0�049 0�078
Altitude (m) 371 688
Distance to urban center (km) 79�8 103
Nearest commercial land value ($/acre) 159,000 168,000
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as in Scott (2013).2 As described below, identification requires exclusion restrictions on
ξ(a�k�w� s) (see also Kalouptsidi, Scott, and Souza-Rodrigues (2020)).

C.2 Payoff parameter estimation

Throughout this section, we use t-subscripts in place of explicitly writing the aggregate
state variable wmt . We also omit the subscripts i (fields) and m (counties) to simplify
notation. The derivation relies on two crucial assumptions: (a) agents are small; that is,
changing the action of any agent at time t does not affect the distribution of wt+1, and
(b) agents have rational expectations.

Here, we consider two estimators for the payoff function. Let pct (k� s) denote the
probability of choosing action “crops” at time period t given state k for a field of type
s, and let σ be the scale parameter of the logit shocks (we discuss this further below).
We begin with Scott’s (2013) linear estimating equation for a dynamic model with logit
errors; we refer the interested reader to Scott (2013) (see also Kalouptsidi, Scott, and
Souza-Rodrigues (2020)) for the derivation of the following equation:

Yt(k� s)= θ̃0(k� s)+ θ1
(
Zt(c� s)−Zt(nc� s)

) + ξ̃k�s�t + ẽk�s�t � (C2)

where

Yt(k� s) ≡ ln
(

pct (k� s)

1 −pct (k� s)
)

+β ln
(

pct+1(0� s)

pct+1
(
k′(nc�k)� s

))
�

θ̃0(k� s) ≡ (
θ0(c�k� s)− θ0(nc�k� s)

)
/σ

+β(
θ0(c�0� s)− θ0

(
c�k′(nc�k)� s

))
/σ�

θ1 ≡ 1/σ�

ξ̃k�s�t ≡ ξt(c�k� s)− ξt(nc�k� s)

+β(
ξt+1(c�0� s)− ξt+1

(
c�k′(nc�k)� s

))
�

ẽk�s�t ≡ β
(
Et

[
Vt(0� s)

] − Vt(0� s)
)

−β(
Et

[
Vt+1

(
k′(nc�k)� s

)] − Vt+1
(
k′(nc�k)� s

))
�

Ultimately, this is a linear equation that can be used to estimate the parameters of the
payoff function with no need to solve the agent’s dynamic optimization problem.

On the left-hand side of equation (C2), we have a dependent variable which is a func-
tion of conditional choice probabilities (which are estimated in a first stage, described
below in Section C.3) and the discount factor (which is imputed; we assume it equals
0�95).

On the right-hand side of (C2), the intercept term θ̃0 is a combination of intercepts
of the payoff function θ0. We discuss the identification of θ0 in more detail below, for this
is essentially where the two estimators differ.

2We refer the interested reader to Scott (2013) for details of constructing the measure of observed re-
turns Z. Due to data limitations, we restrict Z to depend only on (a�wmt). One important difference from
Scott (2013) is that we have field level observable characteristics sim and they affect land use switching costs.
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The error term has two components, ξ̃ and ẽ. The term ξ̃ is a function of ξ, repre-
senting unobservable variation in returns, while ẽ is a function of expectational error
terms. Because Z and ξ may be correlated, we follow Scott (2013) and implement an
instrumental variable estimator. To do so, we need exclusion restrictions of the form

E
[
νk�s�t(ξ̃k�s�t + ẽk�s�t)

] = 0� (C3)

where νk�s�t is a vector of instrumental variables. Given that agents have rational expec-
tations, ẽk�s�t is uncorrelated with any function of variables in the time-t information
set by construction. For this reason, E[νk�s�t ẽk�s�t] = 0 holds for any νk�s�t in the time-t
information set and the question of whether equation (C3) is valid becomes a question
of whether E[νk�s�t ξ̃k�s�t] = 0. Such a restriction is a substantive assumption as exclusion
restrictions for instrumental variables typically are.3

We take first-differences for each field and field state, implicitly allowing for ξ̃k�s�t
to have fixed effects for s and k (interacted).4 After taking first differences, the instru-
ments we use are: a constant term, caloric yields, and the lagged value of Zcs�t − Znc

s�t .
5

The moment restrictions are used to estimate θ1. We then form estimates of θ̃0(k� s) by
averaging over the residuals for each (k� s) pair.

Up to this point, our two estimators coincide; that is, our two estimators agree on
the estimates of θ1 and θ̃0(k� s). The estimators differ when it comes from mapping the
estimates of θ̃0(k� s) to estimates of θ0(·�k� s). Notice that for each type s, equation (C2)
includes one intercept parameter θ̃0(k� s) for each field state k. However, the original
payoff function involves two intercept parameters (θ0(c�k� s) and θ0(nc�k� s)) for each
(s�k) combination. Hence, the need for restrictions for the identification of the model
(and our claim in Section 3.5 that θ0 is not identified without restrictions).

Our first estimator (the CCP estimator) imposes the following restrictions on θ0:

∀k� s: θ0(nc�k� s)= 0� (C4)

After imposing (C4), we can solve for θ0(c�k� s) from our θ̃0(k� s) estimates, recalling that

θ̃0(k� s)≡ (
θ0(c�k� s)− θ0(nc�k� s)

)
/σ +β(

θ0(c�0� s)− θ0
(
c�k′(nc�k)� s

))
/σ� (C5)

noting that equations (C4) and (C5) represent six linearly independent equations in six
unknowns for each (k� s) pair (and noting that the scale parameter σ is identified given
that θ1 ≡ 1/σ).

Our second estimator (the V-CCP estimator) does not impose equation (C4), and
instead uses additional information in resale prices. In order to relate observed resale
prices to farmer’s payoff and value functions, we need a model of transaction prices. We
assume that resale prices measure farmer’s ex ante value functions; that is,

lnpRS
t = ln

(
Ṽt(k� s)

) +ηt� (C6)

3If we were willing to assume that E[(Zcs�t −Znc
s�t )ξ̃k�s�t ] = 0, then we could estimate equation (C2) using

ordinary least squares.
4Note that we predict CCPs for each field state k, not just for the field state actually observed on the field,

so we can take these first differences for each k regardless of the actual path of k for the field.
5See Scott (2013) for the measurement of caloric yields.
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where pRS
t is the resale price of a field, ηt is measurement error, and we will explain

the reason for the tilde on the value function below. Using resale prices as signals of the
value function can be justified by assuming that there is a competitive market for buying
farms; see Kalouptsidi (2014) for further discussion of this assumption in the context of
bulk shipping.

We estimate a flexible model of how resale prices depend on (k� s� t), much like
Kalouptsidi (2014) (see Section C.4 for details about the implementation). Fitted values
from this regression can be used as estimates of the value function, but an important
caveat is that we must consider the scale of the utility function when interpreting the
estimates. In econometric discrete choice models, we typically impose a scale normal-
ization on the model that sets the variance of the idiosyncratic shocks equal to a conve-
nient number (e.g., unity for a probit model of π2/6 for a logit model). In our parametric
land use model, the coefficient on returns, θ1, reflects this normalization: the parame-
ter θ1 can be understood as the scalar we need to multiply by to convert the units from
dollars to utils. When we estimate a hedonic model of the value function, the value func-
tion is measured in dollars. Therefore, to convert from the estimated value function to
the scale-normalized value function we should multiply by θ1:

Vt(k� s)= θ1Ṽt(kit� sit)�

A relationship between value functions and the payoff function can be derived as
follows:

Vt(k� s) = vt(c�k� s)+ψc
(
pct (k� s)

)
= πt(c�k� s)+βEt

[
Vt+1

(
k′(c�k)� s

)] +ψc
(
pct (k� s)

)
= πt(c�k� s)+βVt+1

(
k′(c�k)� s

) + ek�s�t +ψc
(
pct (k� s)

)
�

where

ek�s�t ≡ β
(
Et

[
Vt

(
k′(c�k)� s

)] − V (
k′(c�k)� s

))
�

Ultimately, we can write the payoff function as a function of conditional choice proba-
bilities (estimated in a first stage), value functions (estimated using retail prices in a first
stage), and an expectational error term (mean zero):

πt(c�k� s)= Vt(k� s)−βVt+1
(
k′(c�k)� s

) −ψc
(
pct (k� s)

) − ek�s�t � (C7)

Recalling that the measured version of the value function needs to be converted from
dollars to utils to be on the same scale as the normalized payoff function, we have

πt(c�k� s)= θ1
(
Ṽt(k� s)−βṼt+1

(
k′(c�k)� s

)) −ψc
(
pct (k� s)

) − ek�s�t � (C8)

Noting that an estimate of θ1 can be obtained from the CCP estimator, we can then ob-
tain estimates of payoffs using equation (C8), simply by plugging in the estimated values



Supplementary Material Identification of counterfactuals 7

of θ1, Ṽ and p.6 More to the point, we can obtain estimates of the intercept parameters:

θ0(c�k� s)= −θ1Zt(c� s)+ θ1
(
Ṽt(k� s)−βṼt+1

(
k′(c�k)� s

)) −ψc
(
pct (k� s)

) − ek�s�t � (C9)

The V-CCP estimator uses equation (C9) to estimate θ0(c�k� s) by averaging the right-
hand side of (C9) over time. Finally, the estimates of θ0(nc�k� s) are then recovered from
equation (C5).

Note that we could alternatively estimate θ0(nc�k� s) from an equation like (C9), but
using noncrops as the action instead of crops. Thus, we have overidentifying restric-
tions. As the primary reason, we consider the V-CCP estimator is to replace the a priori
identifying restrictions in the CCP estimator with a more data-driven approach, we only
take as much information as we need from the resale prices to fully identify the payoff
function. If we were to use more information from the resale prices, then the two estima-
tors might not agree on the value of θ̃0(k� s), an object that is identified from CCP data
without imposing identifying restrictions. Our two estimators only differ when it comes
to parameters that cannot be identified from CCP data without restrictions. Thus, by
comparing these two estimators, we isolate the impact of identifying restrictions.

C.3 Conditional choice probabilities

We estimate conditional choice probabilities using a semiparametric logit model. The
model is fully flexible over field states and year, but smooth across counties. In particu-
lar, we maximize the following log likelihood function:

max
θckt

∑
m′∈Sm

∑
i∈Im′

wm�m′I[kimt = k]
{
I[aimt = c] log

(
pmt(c�k� sim;θckt)

)
+ I[aimt = nc] log

(
1 −pmt(c�k� sim;θckt)

)
}
�

where Sm is the set of counties in the same US state asm, Im is the set of fields in county
m,wm�m′ is the inverse squared distance between countiesm andm′, and I[·] is the indi-
cator function. The conditional choice probability is parameterized as follows:

pmt(c�k� sim;θckt)= exp
(
s′imθckt

)
1 + exp

(
s′imθckt

) �
Note that without fields’ observable characteristics sim, this regression would amount
to taking frequency estimates for each county m, field state k, and year t, with some
smoothing across counties. Including covariates allows for within-county field hetero-
geneity. The final specification for the conditional choice probabilities only uses slopeim
among regressors because it proved to be the most powerful predictor of agricultural
land use decisions (after conditioning on county and field state).

The set of counties in Sm only includes counties which also appear in the DataQuick
database. For some states, the database includes a small number of counties, so in these

6Recall that estimating θ1 with the CCP estimator does not require any identifying restrictions on θ0.

Consider equation (C2), a regression equation that allows us to estimate θ1 and θ̃0. The identifying restric-
tions are only needed if we want to map from θ̃0 to θ0.
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cases we group two or three states together. For example, only one county in North
Dakota appears in our sample, and it is a county on the eastern border of North Dakota,
so we combine North Dakota and Minnesota. Thus, for each county m in North Dakota
or Minnesota, Sm represents all counties in both states in our sample.7

For the sake of precision, rather than only estimating CCPs using the CDL sample
that was merged with resale data, we used the full 840m subgrid of fields from the CDL
(848,384 fields) for the CCP estimation. We then predicted CCPs and estimated payoff
functions using fields that were merged with the resale data.

C.4 Resale price regression

Next, we discuss how we estimate the value function from resale prices. We view that our
resale market assumptions are not overly restrictive in the context of rural land which
features a large number of small agents. The land resale market is arguably thick, with a
large number of transactions taking place every year.8 Moreover, we are able to control
for a rich set of field characteristics. Finally, we did not find evidence of selection on land
use changes upon resale, as discussed below.

As our transaction data is much more sparse than our choice data, we adopt a more
restrictive (parametric) form for modeling land values. We estimate the following regres-
sion equation:

lnpRS
it =X ′

itθV +ηit� (C10)

wherepRS
it is a transaction price (in dollars per acre), andXit is a vector of characteristics

for the corresponding field. The covariates Xit include all variables in Table B2 (i.e., k,
slope, altitude, distance to urban centers, nearby commercial values). They also include
year dummies, returns interacted with year dummies, field state dummies interacted
with year dummies, and county dummies.

Table C1 presents the estimated coefficients. Although not shown in the table, the
estimated coefficients of k are significant and have the expected signs (the large number
of interactions makes it difficult to add them all in the table). This is important for the
second stage estimation, as k is the main state variable included in the switching cost
parameters θ0(a�k).

Note that, because field acreage is available only in the DataQuick dataset, when
merging with the CDL and remaining datasets we lose this information. This implies, for
example, that acreage cannot be a covariate in the choice probabilities. For this reason,
we choose a specification for the value function that regresses price per acre on covari-
ates. The value of our R2 in our regression is a direct consequence of this fact. When we

7In particular, we form a number of groups for such cases: Delaware and Maryland; North Dakota and
Minnesota; Idaho and Montana; Arkansas, Louisiana, and Mississippi; Kentucky and Ohio; Illinois, Indiana,
and Wisconsin; Nebraska and Iowa; Oregon and Washington; Colorado and Wyoming.

8Comparing DataQuick with the CDL data we see that 1�4–2% of fields are resold every year. Moreover,
the USDA reports that in Wisconsin there are approximately 100 thousand acres transacted every year
(about 1000 transactions) out of 14�5 million acres of farmland (seemingly information on other states is
not available).
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Table C1. Land resale price regression.

(1)
Variables log(land value)

log(distance to urban center) −0�471
(0�0297)

commercial land value 0�102
(0�00930)

slope −1�654
(0�160)

alt −0�000226
(9�00e−05)

Observations 24,643
R-squared 0�318

Note: Robust standard errors in parentheses. Omitted:
soil, county, year, and field state dummies as well as inter-
actions with returns.

use total land prices as the dependent variable and include acres on the covariates we
obtain R2 as high as 0�8.

Finally, we briefly discuss the possibility of selection on transacted fields. As shown
previously in Table B3 of Section B, the characteristics of the transacted fields (in
DataQuick) look similar to all US fields (in the CDL). Furthermore, we investigate
whether land use changes upon resale. Using a linear probability model, we find no
such evidence (see Table C2). We regress the land use decision on dummy variables for
whether the field was sold in the current, previous, or following year as well as vari-
ous control variables. In regressions within each cross section, ten of the eleven coef-
ficients on the land transaction dummy variables are statistically insignificant, and the

Table C2. Land use and transactions.

(1) (2) (3) (4)
Variables incrops2010 incrops2011 incrops2012 incrops2013

soldin2009 0�000647
(0�00604)

soldin2010 0�000116 0�00364
(0�00326) (0�00334)

soldin2011 −0�00117 0�000629 −0�00159
(0�00316) (0�00324) (0�00330)

soldin2012 −0�000620 −0�00472 0�00411
(0�00306) (0�00313) (0�00265)

soldin2013 −0�00962 −0�000445
(0�00306) (0�00256)

Observations 23,492 23,492 23,492 23,492
R-squared 0�666 0�698 0�717 0�757

Note: Standard errors in parentheses. Linear probability model. Omitted covariates include current returns, field state, US
state, slope, local commercial land value, distance to nearest urban center, and interactions.
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estimated effect on the probability of crops is always less than 1% (see Table C2). We
have tried alternative specifications such as modifying the definition of the year to span
the planting year rather than calendar year, and yet we have found no evidence indi-
cating that there is an important connection between land transactions and land use
decisions.
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