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A Mathematical Derivation of Useful Identities

Under the HMM assumptions, and by the law of total probability, the joint distribution of (.8C , .8C−1)

satisfies

Pr [.8C , .8C−1] =
∑
B∈S

Pr [.8C |(8C = B] Pr [(8C = B,.8C−1] . (A1)

Similarly, the joint distribution of (.8C+1, .8C) is such that

Pr [.8C+1, .8C] =
∑
B′∈S

∑
B∈S

Pr [.8C+1 |(8C+1 = B′] Pr [(8C+1 = B′|(8C = B]

×Pr [.8C |(8C = B] Pr [(8C = B]

=
∑
B′∈S

∑
B∈S

Pr [.8C+1 |(8C+1 = B′] Pr [(8C+1 = B′, (8C = B] Pr [.8C |(8C = B] , (A2)

where the first equality follows from the lawof total probability and theHMMassumption (i.e., equa-

tion (2) in themain text); and the second equality uses the fact thatPr [(8C+1 = B′|(8C = B] Pr [(8C = B] =

Pr [(8C+1 = B′, (8C = B].

Finally, the joint distribution of (.8C+1, .8C , .8C−1) satisfies

Pr [.8C+1, .8C , .8C−1] =
∑
B∈S

Pr [.8C+1 |(8C = B] Pr [.8C |(8C = B] Pr [.8C−1, (8C = B] , (A3)
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because

Pr [.8C+1, .8C , .8C−1]

=
∑
B′∈S

∑
B∈S

Pr [.8C+1, .8C , .8C−1, (8C = B
′, (8C−1 = B]

=
∑
B′∈S

∑
B∈S

Pr [.8C+1 |.8C , (8C = B′] Pr [.8C , (8C = B′|.8C−1, (8C−1 = B] Pr [.8C−1, (8C−1 = B]

=
∑
B′∈S

∑
B∈S

Pr [.8C+1 |(8C = B′] Pr [.8C |(8C = B′] Pr [(8C = B′|(8C−1 = B] Pr [.8C−1, (8C−1 = B]

=
∑
B′∈S

Pr [.8C+1 |(8C = B′] Pr [.8C |(8C = B′]
(∑
B∈S

Pr [(8C = B′|(8C−1 = B] Pr [.8C−1, (8C−1 = B]
)

=
∑
B′∈S

Pr [.8C+1 |(8C = B′] Pr [.8C |(8C = B′] Pr [.8C−1, (8C = B
′] ,

where the first equality follows from the law of total probability; the second equality decomposes

the joint distribution in terms of the corresponding conditional distributions; the third equality

makes use of the HMM assumption (equation (2)); the fourth equality rearranges the terms in the

summations; and the fifth equality follows from the law of total probability.

In matrix notation, equations (A1)–(A3) are equivalent to the equations (3)–(5) presented in the

main text.

B Measurement Error under the HMM Assumptions

In this section, we investigate the measurement error in observed transition probabilities under

the HMM assumptions. While the implications of (nonclassical) measurement error in discrete

variables are well understood (see, e.g., the survey by Schennach, 2021), mismeasured transition

probabilities have been less studied in regression analyses. Here, we focus first on deriving

the relationship between (a) the observed transitions, (b) the true latent transitions, and (c) the

measurement error term, in order to shed light on the type of errors (e.g., classical vs nonclassical)

that arises as a consequence of the HMM assumptions. Then, we use this relationship to investigate

how it may affect the estimation of regression model parameters.
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We assume the researcher is interested in measuring transitions within defined regions, and has

access to a panel data with many regions <, where each region is composed of several pixels 8. For

instance, she may be interested in deforestation rates or pollution trends at the municipality level.

Take a pixel 8 in a region < at time C. (For expositional ease, we omit the subscripts 8 and < below.)

The transition probability of the observed state from H at C to H′ at C + 1 can be written as

Pr [.C+1 = H′|.C = H] =
∑
B∈S

∑
B′∈S

Pr [.C+1 = H′, (C+1 = B′, (C = B |.C = H]

=
∑
B∈S

∑
B′∈S

Pr [.C+1 = H′|(C+1 = B′, (C = B,.C = H] Pr [(C+1 = B′, (C = B |.C = H]

=
∑
B∈S

∑
B′∈S

Pr [.C+1 = H′|(C+1 = B′] Pr [(C+1 = B′|(C = B] Pr [(C = B |.C = H] ,

(B4)

where the third equality follows from the main HMM assumption – equation (2).

To simplify, suppose we have just two states. For concreteness, and following our running

example, suppose S ={3, 5 }, where 3 = deforested and 5 = forested. Here we focus on the

measurement error in the transition probability from forest to deforested (i.e., the deforestation

rate), but the reasoning applies to transitions involving any two states. Specifically, take H′ = 3 and

H = 5 . Then, (B4) becomes

Pr [.C+1 = 3 |.C = 5 ] = Pr [.C+1 = 3 |(C+1 = 3] Pr [(C+1 = 3 |(C = 5 ] Pr [(C = 5 |.C = 5 ]

+Pr [.C+1 = 3 |(C+1 = 3] Pr [(C+1 = 3 |(C = 3] Pr [(C = 3 |.C = 5 ]

+Pr [.C+1 = 3 |(C+1 = 5 ] Pr [(C+1 = 5 |(C = 5 ] Pr [(C = 5 |.C = 5 ]

+Pr [.C+1 = 3 |(C+1 = 5 ] Pr [(C+1 = 5 |(C = 3] Pr [(C = 3 |.C = 5 ] .
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By rearranging the equation above, and noting that probabilties add up to one, we obtain

Pr [.C+1 = 3 |.C = 5 ] = (Pr [.C+1 = 3 |(C+1 = 3] − Pr [.C+1 = 3 |(C+1 = 5 ])

×Pr [(C = 5 |.C = 5 ] Pr [(C+1 = 3 |(C = 5 ]

+Pr [.C+1 = 3 |(C+1 = 5 ]

+ (Pr [.C+1 = 3 |(C+1 = 3] − Pr [.C+1 = 3 |(C+1 = 5 ])

×Pr [(C = 3 |.C = 5 ] Pr [(C+1 = 3 |(C = 3] . (B5)

Next, denote the observed deforestation rate in region< at C+1 by �<C+1 = Pr [.C+1 = 3 |.C = 5 ]

(i.e., the share of forested pixels in region< at C that become deforested at C+1) and the corresponding

true deforestation rate by �∗
<C+1 = Pr [(C+1 = 3 |(C = 5 ]. (Note that we allow these rates to vary

across the regions < and over time C.) Define also the term multiplying the true deforestation rate

in (B5):

V<C+1 = (Pr [.C+1 = 3 |(C+1 = 3] − Pr [.C+1 = 3 |(C+1 = 5 ]) × Pr [(C = 5 |.C = 5 ]

= (Pr [.C+1 = 3 |(C+1 = 3] − Pr [.C+1 = 3 |(C+1 = 5 ])

×Pr [.C = 5 |(C = 5 ] Pr [(C = 5 ]
Pr [.C = 5 ] , (B6)

where the second equality holds by the Bayes rule. Note again that we re-incorporate the subscripts

< and C +1 explicitly in the definition of V<C+1, as this term may vary over regions and time periods.

The terms on the right-hand side of (B6) should be understood to condition on pixels in region <.

Assuming the classifier is accurate (in the sense that correct classification is more likely than

misclassification), the first term on the right-hand side of (B6) is positive, which implies that V<C+1

is between zero and one. Clearly, V<C+1 depends on the misclassification probabilities and on the

ratio of the shares of true and observed forested areas in region < in the previous period C. In

general, the greater the percentage of correct classifications, and the higher the share of true forested

areas relative to the share of observed forested areas, the greater the V<C+1.
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Next, define the term composed of those in (B5) that are not multiplying the true deforestation

rate:

*<C+1 = Pr [.C+1 = 3 |(C+1 = 5 ] + (Pr [.C+1 = 3 |(C+1 = 3] − Pr [.C+1 = 3 |(C+1 = 5 ])

×Pr [(C = 3 |.C = 5 ] Pr [(C+1 = 3 |(C = 3]

= Pr [.C+1 = 3 |(C+1 = 5 ] + (Pr [.C+1 = 3 |(C+1 = 3] − Pr [.C+1 = 3 |(C+1 = 5 ])

× (1 − Pr [.C = 3 |(C = 3])
(
1 − Pr [(C = 5 ]

Pr [.C = 5 ]

)
Pr [(C+1 = 3 |(C = 3] , (B7)

where the second equality holds by the Bayes rule. Assuming again that the classifier is accurate, we

have that *<C+1 is positive. Similar to V<C+1, *<C+1 depends on the misclassification probabilities

and on the shares of true and observed forested areas in the previous period, but, in contrast to

V<C+1, it also depends on the true persistence of the deforested areas (Pr [(C+1 = 3 |(C = 3]).

Substituting the definitions of �<C+1, �∗<C+1, V<C+1, and *<C+1 into equation (B5), and taking

the lagged expression, we obtain the following (random-coefficients) model:

�<C = V<C �
∗
<C +*<C .

Adding and subtracting the average of V<C and*<C (over< and C), denoted by V and U, respectively,

we get

�<C = U + V �∗<C ++<C , (B8)

where

+<C = (V<C − V) �∗<C + (*<C − U) . (B9)

The slope V of the regression equation (B8) – also known as the “factor loading” – is between

zero and one (given that V<C is between zero and one for all < and C), provided that the land

use classifier is accurate everywhere. This contrasts with standard measurement error models, in

which loadings are typically equal to one. The measurement error, +<C , depends on both (a) the

interaction between �∗<C and the (mean-zero) random coefficients V<C (which in turn depends on
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misclassification probabilities and on shares of true and observed forested areas), and (b) the (mean-

zero) term *<C (which also depends on misclassification probabilities and on shares of true and

observed forested areas, in addition to on the true persistence of deforested areas). In the absence

of ground-truth data and of additional (identifying) assumptions, the residual +<C is unobservable.

While it is non-trivial to derive the exact dependence between �∗<C and +<C , given (B6)–(B9),

their correlation seems unlikely to be zero. That is because, on the one hand, transition probabilities

are between zero and one, so when �∗<C = 0, we must have �<C ≥ 0, and when �∗<C = 1, we must

have �<C ≤ 1, suggesting a negative correlation between �∗<C and +<C . On the other hand, regions

in which deforestation is persistent (i.e., places with high levels of Pr [(C = 3 |(C−1 = 3], and so with

high levels of *<C , all else constant) are likely good regions for agricultural production, leading to

high deforestation rates, which in turn induces a positive correlation between �∗<C and +<C . These

observations suggest that �∗<C and +<C likely correlate, though the direction of the correlation is

unclear ex-ante; their probabilistic relationship may even be nonlinear. Either way, the derivation

presented here suggests the presence of nonclassical measurement error in transition rates under

the HMM assumptions.

B.1 Consequences of HMMMeasurement Error for Regression Models

Next, we investigate the consequences ofmeasurement error in transition probabilities for regression

models. We focus on mismeasured dependent variables (when the researcher may be interested,

say, in the determinants of deforestation or in some causal effect of a policy intervention), but a

similar reasoning applies tomismeasured covariates (as when researchers are interested in the health

impacts of changes in pollution levels or of changes in fires incidents). We start with the standard

linear regression model, then we study the widely used logit model, and extend the investigation to

the nested logit model.

7



Linear Model. Suppose we want to estimate the following simple regression model

�∗<C = W0 + W1-<C + Y<C ,

where -<C is a potential determinant of interest, e.g., the price of a commodity like beef or palm oil,

or a policy intervention indicator. For simplicity, we assume -<C is uncorrelated with Y<C . Suppose

we only observe �<C satisfying the HMM assumptions, and so satisfying equations (B8)–(B9).

Let the (possibly nonlinear) dependence between +<C and �∗<C (defined in the previous section) be

specified as

+<C = ℎ
(
�∗<C

)
+ n<C ,

for some unknown (possibly nonmonotonic) function ℎ(.). Then

�<C = U + V �∗<C ++<C

= U + V �∗<C + ℎ
(
�∗<C

)
+ n<C

= U + V (W0 + W1-<C + Y<C) + ℎ (W0 + W1-<C + Y<C) + n<C

= X0 + X1 -<C + b<C ,

where X0 = (U + VW0), X1 = VW1, and

b<C = ℎ (W0 + W1-<C + Y<C) + n<C + VY<C .

If we regress the mismeasured �<C on -<C using OLS to estimate W1, we obtain biased results

for two reasons. First, if -<C and b<C were uncorrelated, OLS would be unbiased for X1 = VW1 ≠ W1,

and so it would be biased for W1 given that V is between zero and one when the land use classifier

is accurate. That leads to an attenuation bias. (When the land use classifier is not accurate, V

could be negative, reversing the sign of the estimates.) Second, because -<C may correlate with

the unobservable b<C , through the term ℎ(.). As discussed previously, ℎ(.) reflects the nonclassical
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nature of the measurement error in transition probabilities (i.e., it reflects the fact that �∗<C and +<C

likely correlate). This correlation can be positive or negative; when the correlation is positive and

sufficiently large, it can bias OLS upward. In sum, when transition probability is the dependent

variable of interest in a linear regression model, its measurement error most likely biases (without

necessarily attenuating) the OLS estimator.

Logit Model. Consider the following logit model of deforestation rates:

ln
(
�∗<C

1 − �∗<C

)
= W0 + W1 -<C + Y<C ,

where -<C is independent of Y<C . The right-hand side of this regression equation corresponds to

a mean value of a latent variable, and can be interpreted as the mean utility received by agents in

region < at C from deforestation. Given that we observe �<C instead of �∗<C , we have

ln
(
�<C

1 − �<C

)
= W0 + W1 -<C + Y<C +

[
ln

(
�<C

1 − �<C

)
− ln

(
�∗<C

1 − �∗<C

)]
. (B10)

To have a sense of the effect that the last term on the right-hand-side of (B10) can have on

estimation, apply a second-order Taylor approximation to ln
(
�<C

1−�<C

)
about ln

(
�∗<C

1−�∗<C

)
to obtain an

approximation to equation (B10):

ln
(
�<C

1−�<C

)
≈ W0 + W1 -<C + Y<C −

(
1

�∗<C (1−�∗<C)
) (
�∗<C − �<C

)
− 1−2�∗<C
(�∗<C (1−�∗<C))2

(
�∗<C − �<C

)2
.

If the measurement error in deforestation rate were classic, the expectation of the first-order

term above would be zero, i.e.,

�

[(
1

�∗<C
(
1 − �∗<C

) ) (
�∗<C − �<C

)
|-<C

]
= 0.

However, given that �∗<C − �<C = −U + (1 − V)�∗<C −+<C , where (1 − V) > 0, and that �∗<C likely
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correlates with +<C (see equation (B8)), the expectation of the first-order term may be different

from zero.

Similarly, the second-order term is not mean-zero either. This is easier to see if themeasurement

error were classic, with+0A (�∗<C−�<C |-<C) = f2. In this case, the expectation of the second-order

term above would be

�

[
1 − 2�∗<C(

�∗<C
(
1 − �∗<C

) )2
(
�∗<C − �<C

)2 |-<C

]
= f2�

[ (
1 − 2�∗<C

)(
�∗<C

(
1 − �∗<C

) )2 |-<C

]
, (B11)

which is not zero. More importantly, not only are the expectations of the first- and second-order

terms of the approximation not zero, they also vary with -<C , since �∗<C depends directly on -<C .

This means that these terms can create bias in both the estimates of W0 and W1.

Nested Logit Model. Consider a nested logit model with three elements in the choice set: crops,

pasture, and forest. Furthermore, assume that crops and pasture are in the same nest, and forest is

in a separate nest. A regression equation for such a model has the following form:

ln
(

��<C

1 − �%<C − ��<C

)
= W0 + W1-<C + _ ln

(
��<C

��<C + �%<C

)
+ Y<C ,

where ��<C is the observed rate at which forest is converted to cropland and �%<C is the observed

rate at which forest is converted to pasture. The new parameter not appearing in the basic logit

model above is _, which controls the degree to which the shocks to latent variables are correlated

within the nest. If _ = 0, we just have a multinomial logit model with no correlation in shocks. As

_→ 1, the shocks within the nest become highly correlated.

In this nested logit regression equation, measurement error in the transition rates implies both

a left-hand-side and a right-hand-side measurement error problems. The first case was discussed

previously, in the context of a binary logit model; the second case may induce an attenuation bias

in the estimate of _.
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C The EM and the Viterbi Algorithms

We now briefly explain the EM and the Viterbi algorithms.

C.1 The EM Algorithm

To simplify notation, let \ represent the collection of HMM parameters, i.e. \ is a list containing

Pr [(81], Pr [(8C+1 |(8C] for C = 1, ..., ) − 1, and Pr [.8C |(8C], for all C = 1, ..., ) . Let H denote the entire

panel of observations {H8C}; similarly, let B denote values of the hidden state for the entire panel.

Define the log likelihood

; (\) ≡ ln Pr [. = H; \] (C12)

and let

� (\, \′) ≡
∑
B

Pr [( = B |. = H; \′ ] ln
{

Pr [. = H, ( = B; \ ]
Pr [. = H, ( = B; \′ ]

}
. (C13)

The EM algorithm begins with an initial guess \ (1) then alternates between steps 1 and 2 below

for iterations 9 = 1, 2, . . . until convergence:

1. The expectation (E) step: compute the posteriors Pr
[
( |. = H; \ ( 9)

]
2. The maximization (M) step: set \ ( 9+1) to arg max\ �

(
\, \ ( 9)

)
The EM algorithm produces a sequence of parameter estimates for which the log likelihood

;

(
\ ( 9)

)
is monotonically increasing. In problems where the likelihood function is non-concave,

this means the algorithm could converge to a local maximum.

A key aspect of the E-step of the EM algorithm is the Baum-Welch algorithm. It efficiently

calculates probabilities of the form

Pr [(8C |.81, .82, . . . , .8) ] ,

where C ≤ ) . In words, the model allows us to condition on a long sequence of noisy land use

classifications at a given spatial point, and make probabilistic statements about the point’s true land
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use at any period in that history. This is valuable if we are interested in land cover at a specific

point: the fact that we condition on the entire sequence .81, .82, . . . .8) can potentially improve

predictions when compared to classifiers that use only contemporaneous data to predict land use.

For instance, suppose we have 15 years of data at a particular spatial point, and that the land use

set is S = {forest, deforested}. Imagine that our land use prediction model outputs .8C = forest for

the first 10 years, followed by deforestation for a single year, followed by four years of forest.

Intuitively, if our classifier is reasonably accurate but imperfect, we would guess that the isolated

deforestation prediction is erroneous and that the true land use was forest for the entire 15 years.

This is conceivable given that it takes far longer than a year to regrow forest on newly deforested

land, and given the implausibility of all the classifications other than the eleventh being wrong (or at

least several of them). Thus, we might in principle simply relabel the eleventh year as “forest”. By

implementing such ad-hoc reclassifications, one can effectively smooth out implausible transitions

in the data. However, while heuristic-based adjustments such as this simple solution improve

estimations of transition rates by making use of time-series information, rather than just cross-

sectional information (as typically done in annual land cover classifications), such adjustments are

at the whim of the researcher and so may be highly arbitrary. Further, they can be incomplete

as there may be cases requiring corrections that are not considered by the researcher. Indeed,

typical heuristic adjustments do not eliminate excessive transitions in land use applications, as

documented by Friedl et al. (2010). In contrast, the HMM approach naturally accomplishes this

sort of smoothing by explicitly modeling the probability of errors in predicted land use, along

with the transition probabilities in the true underlying state – and with no heuristics nor ad hoc

adjustments involved. The amount of smoothing depends on the estimated parameters – in the

edge cases where the off-diagonals of � are zero, for example, we do not need any smoothing.

Identifying the parameters from observed data is therefore crucial in applications, and the Baum-

Welch algorithm allows us to smooth out implausible transitions efficiently.

In our application, the M step of the EM algorithm has a closed-form solution. Denote the

posterior probabilities by c8C [:] ≡ Pr[(8C = : |. = H; \ ( 9)] and c8C [:, ;] ≡ Pr[(8C = :, (8C+1 =
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; |. = H; \ ( 9)]; these can be computed in an efficient forward-backward pass over time using the

Baum-Welch algorithm (i.e., the E step), and the calculations can be done in parallel across spatial

points given that we are not modeling spatial dependence (i.e., not conditioning on other pixels’

land uses). The updated values of \ are

Pr [(81 = :] ( 9+1) =
∑
8 c81 [:]∑
8,B c81 [B]

,

Pr [(8C+1 = ; |(8C = :] ( 9+1) =
∑
8 c8C [:, ;]∑
8 c8C [:]

,

Pr [.8C = H |(8C = :] ( 9+1) =
∑
8,C:.8C=H c8C [:]∑

8,C c8C [:]
.

(C14)

See van Handel (2008) for a reference on the EM algorithm applied to discrete HMMs. Extend-

ing the EM algorithm to deal with cases where .8C is missing at random (e.g. due to cloud cover)

is straightforward: in the M step update to �, the sums in both the numerator and denominator

are restricted to cases where .8C is non-missing. Modifying the Baum-Welch algorithm (i.e. the

E step) to deal with missingness-at-random in .8C is equally simple, as we only need to compute

Pr [(8C |.81, .82, . . . , .8) ] conditioned on the available information for each pixel 8. (For instance, if

.82 is missing, we compute Pr [(8C |.81, .83, . . . , .8) ] for all C ≤ ) .)

C.2 The Viterbi Algorithm

The HMM correction is not a classifier per se, but it can be used to generate the most likely

trajectory of the states for each pixel in the data using the Viterbi algorithm (van Handel, 2008,

Chapter 3). The Viterbi algorithm is a dynamic programming algorithm that generates these

predictions given the estimated HMM parameters and the history of observations {.1, .2, . . . , .) }.

Formally, it chooses the sequence {B1, B2, . . . , B) } that maximizes the conditional probability path

estimate Pr [(1, (2, . . . , () |.1, .2, . . . , .) ] for any given pixel.

Briefly, the probability path estimatePr [(1, (2, . . . , () |.1, .2, . . . , .) ] can be expressed in terms

of initial, transition and misclassification distributions by exploiting the HMM structure and the

Bayes formula. Based on such expression, the maximization problem can be solved recursively, as
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the Bellman equation in dynamic optimization problems, solving for one variable only in each step

(see Section 3.3 in van Handel, 2008). Notice that finding the most likely path is different from the

problem of finding the most likely state in a given period Pr [(C |.1, .2, . . . , .) ], which is calculated

efficiently by the Baum-Welch algorithm, as noted previously.

As a word of caution, while the Viterbi algorithm computes the classification for a given point,

it may not yield unbiased estimates of land use shares or transition rates for an area (but these can

be recovered directly from the HMM, so the Viterbi should not be needed in this circumstance).

That is not surprising given that there is an information loss when we go from the knowledge of the

full probability distribution to knowing just the most likely outcome. It is worth noting too that the

Viterbi algorithm is more likely to be useful in longer time series, when there is more information

from the HMM parameters on the likelihood of different paths.

D Monte Carlo Studies

In this section, we present several Monte Carlo experiments to investigate the finite-sample per-

formance of the MD and ML estimators. First, we fix the parameters of the model (the initial

distribution, the transition probabilities, and the misclassification probabilities) and vary the sam-

ple size (i.e., the number of grid points). Second, we fix the number of grid points and evaluate how

the estimators perform at different true transition probabilities, misclassification probabilities, and

with different numbers of time periods. Third, we incorporate spatial dependence in our design.

Fourth, we investigate the performance of our correction when the HMM model is misspecified;

specifically, we allow for serial correlation in misclassification probabilities, violating therefore

equation (2) in the main text. Finally, we analyze a simple treatment effects regression where

transition rates are the dependent variable and test whether HMM estimates can yield unbiased

estimates.
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D.1 Basic Setup

We consider two land uses, S = {1, 2}, observed in ) = 4 time periods. The initial distribution

over hidden states is

P(1 = (0.9, 0.1)ᵀ ,

where the initial share of land cover B = 1 is 0.9. The transition matrices are

P1 ≡ P(2 |(1 =
©«
0.96 0.04

0.02 0.98

ª®®¬ , P2 ≡ P(3 |(2 =
©«

0.9 0.1

0.02 0.98

ª®®¬ , P3 ≡ P(4 |(3 =
©«

0.8 0.2

0.02 0.98

ª®®¬ .
So the probability that a pixel 8 with land cover B = 1 in period C = 1 stays with the same land cover

in the next time period, C = 2, is Pr[(82 = 1|(81 = 1] = 0.96. The transition probability decreases to

Pr[(83 = 1|(82 = 1] = 0.9 in the next period C = 3, and decreases further to Pr[(84 = 1|(83 = 1] = 0.8

in the last period C = 4. To simplify, we keep the transitions conditioned on state B = 2 the same

over time: Pr[(8C+1 = 2|(8C = 2] = .98 for all C.

The misclassification probabilities are time-invariant and given by

� =
©«
0.9 0.2

0.1 0.8

ª®®¬ .
Recall that the elements of � are Pr [.8C = H |(8C = B] (with .8C along the rows and (8C along the

columns). This means that the probability of classifying land use H = 1 when the true land cover

is actually B = 2 is just Pr [.8C = 1|(8C = 2] = 0.2. Correct classification probabilities are 0.9 (for

B = 1) and 0.8 (for B = 2), which are within the range of accuracies observed in practice in typical

land cover classifications.

The HMM generates the observed transitions for .8C :

P.2 |.1 =
©«
0.815 0.185

0.363 0.637

ª®®¬ , P.3 |.2 =
©«
0.775 0.225

0.37 0.63

ª®®¬ , P.4 |.3 =
©«

0.72 0.28

0.472 0.528

ª®®¬ .
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These transitions put much greater probabilities on the off-diagonals than the true transitions. (E.g.,

Pr [.82 = 2|.81 = 1] = 0.185 while Pr [(82 = 2|(81 = 1] = 0.04.) This implies excessive land cover

switching. Frequency estimators of the transition probabilities for .8C are consistent for P.C+1 |.C , and

are therefore inconsistent for the true transitions P(C+1 |(C .

To evaluate the performance of the proposed HMM corrections, based on the MD and ML

estimators, we generated samples with # = 100, # = 500, # = 1, 000, # = 10, 000 spatial grid

points, observed for ) = 4 time periods. For each sample size, we generate 100 Monte Carlo

replications. In each replication, we estimate the observed transitions for .8C using frequency

estimators, and run both MD and ML estimator starting from six randomly chosen initial values.

The initial values for the diagonals of the true P(C+1 |(C and � matrices are i.i.d. uniform on

[0.6, 0.98]. The initial values for the first element of the initial distribution %(1 are drawn i.i.d.

uniform on [.85, .95]. For the MD estimator, we take the identity matrix as the weighting matrix,

W = I, and we use both classifications, HC+1 = 1 and HC+1 = 2, as they both satisfy Condition 4.

D.2 Baseline Results

Table E1 presents the average bias, the standard deviation, and the mean-squared error across the

Monte Carlo replications (on the rows). For each parameter, we show results for the frequency

estimator, the MD, and the ML estimators (on the columns).

As expected, the performances of the MD and ML estimators in terms of the average bias and

mean-square errors are substantially better than the performance of the frequency estimator for both

the initial distribution of land cover and the transition rates. Naturally, both corrections improve

with the sample size, while the frequency estimator does not. The HMM corrections also estimate

the misclassification probabilities accurately.

As the table shows, the ML often dominates the MD estimator by having smaller biases.

Also, especially for smaller sample sizes, the ML has much smaller standard deviations than the

MD estimator. This is not surprising given that the maximum likelihood estimator is efficient.

This can be seen graphically in Figure E3, where we show the distribution across replications
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of the estimated transition probabilities Pr [(8C+1 = 2|(8C = 1], and misclassification probabilities

Pr [.8C = 2|(8C = 1], using box and whisker plots. The true parameter values are marked by dotted

lines. The variability of the MD estimator suggests some caution when using it in small samples.

(These graphs slightly understate the observed variability of the MD estimator, since the graph is

truncated at .5 and some estimated values go above that.) Indeed, in our experience, the greater

standard deviation of the MD estimator (compared to the ML) implies a higher frequency of

estimated transition probabilities that are too close to, or exactly at, the boundary of the parameter

space. That happens more frequently when true transition probabilities are near zero or one.

While not shown in the table, the ML takes longer to converge than the MD estimator. That

is because the EM algorithm loops over the entire panel in its E and M steps; by contrast, the

minimum distance estimator loops over the entire panel only once to compute frequency estimators

of the joint distribution of .8C , and can then evaluate its objective function quickly by looping only

over time, as opposed to the entire panel. These considerations suggest combining the MD and

ML in practice, whenever possible, taking into account their strengths. Indeed, when using the

(fast) MD estimator as the initial value for the (asymptotically more efficient) ML estimator in the

simulations, we find that the “MD followed by ML” approach takes longer to converge than the MD

alone, but it is substantially faster than the ML alone (as expected). Specifically, in our baseline

setting, MD takes around 0.5 second on average to converge; the ML using MD as initial values

takes about 19.5 seconds on average (and runs for 3 iterations); and the ML alone with random

initialization takes around 188 seconds on average (and runs for 30 iterations). So, MD followed

by ML is about 10 times faster than ML alone. And their performances are similar in terms of bias,

variance, and mean-square error, as might be expected.

We also verify the performance of the estimator with ) = 5 and ) = 6. Relative to our ) = 4

period baseline, we fix the transition probabilities for the first and last period and set the transitions

for the middle periods equal to each other.1 While the additional time periods require the estimation

1Specifically, we set

P(2 |(1 =

(
0.96 0.04
0.02 0.98

)
, P(C |(C−1 =

(
0.9 0.1

0.02 0.98

)
,∀1 < C < ), and P() |()−1 =

(
0.8 0.2
0.2 0.98

)
.
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of additional parameters, the larger number of time periods could help improve the precision of the

misclassification probability estimates. In Figure E4, we replicate the results from Figure E3 with

# = 1, 000 observations and ) = 4, 5, and 6 time periods. As these graphs show, the results are

similar across the different number of time periods.

D.3 Varying Parameter Configurations

We now fix the sample size at # = 1, 000 and ) = 4, and investigate the performance of the HMM

corrections for several different parameter configurations. In particular, we hold fixed the transition

probabilities of land use at the levels described before and vary the misclassification probabilities

for the hidden state B = 1. Then we hold fixed the misclassification probabilities and vary the

transition probability for state B = 1 in the last period.

Figure E5 presents the results for when we vary the misclassification probability for state 1,

Pr[.8C = 2|(8C = 1] (i.e., Υ(2, 1)), between 5 and 25 percent, while holding other parameters fixed.

The top panel shows the behavior of the estimates of the transition probabilitiesPr[(8C+1 = 2|(8C = 1],

for C = 1, 2, 3, and the bottom panel shows the behavior of the estimates of the misclassification

probability Pr[.8C = 2|(8C = 1]. The lines are non-parametric loess regression lines with a shaded

95% confidence interval, where the data is fit from the different Monte Carlo simulations.

Intuitively, as the true misclassification probability increases, the frequency estimates of the

transitions increase for every period, even though the actual transition rate is constant. In other

words, the frequency estimator predicts many more transitions than actually occur. In contrast, the

MD and the ML estimators predict a flatter transition rate. Also, the MD performance degrades

for the transition probabilities as the misclassification rate increases. While it is unclear why that

happens, these results suggest that the ML estimator might be preferred in practice when the main

object of interest is the transition probability, Pr[(8C+1 |(8C]. In constrast, when we look at the

estimates of the misclassification rate, Pr[.8C |(8C], the estimates are more similar for the MD and

ML approaches, but the ML is more biased as the true misclassification rate increases.
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Figure E6 presents the results for when we vary the transition probability for hidden state

B = 1 in the last period, Pr[(84 = 2|(83 = 1] (i.e., P3(1, 2)), between 5 and 40 percent. The

format of these graphs is similar to those in Figure E5. These graphs show that both MD and ML

estimators continue to perform well at estimating transitions and misclassification rates with no

notable differences between them (aside from those discussed above).

D.4 Spatial Dependence and Serial Correlation

We now incorporate spatial dependence and serial correlation in our Monte Carlo exercises. For

each specification, we run 100 simulations.2

Set up. To allow for spatial correlation in the true transition process, Pr[(8C+1 |(8C],we first arrange

all pixels in a two dimensional square lattice of dimension 100-by-100 – i.e. we observe 10,000

pixels per time period. The lattice is partitioned into 100 square “fields” of 100 pixels each (so

that each field is composed of 10-by-10 pixels). We assume the true land use follows a first-order

Markov process at the field level, meaning that we always have (8C = ( 9 C when pixels 8 and 9

belong to the same field, and that (8C and ( 9 C are fully independent otherwise. Intuitively, one can

think of the fields as being parcels of land managed by the same person, and that different fields

are managed by different (independent) farmers. This is plausible in empirical applications and it

satisfies the spatial weak dependence assumption (Conley, 1999). (Note that when fields contain

just one pixel, there is no spatial dependence in (8C , and the model presented here coincides with

the one covered in our previous Monte Carlo exercises.) The initial distribution over the hidden

2We have also incorporated missing data that are missing at random, reflecting the common practical issue of
(random) clouds preventing full land use classifications. Specifically, we randomly select 10% of the pixels in every
period to be unobserved (i.e., not classified as either B = 1 nor B = 2), and ran the same set of specifications described
below. As expected, observations that are missing-at-random do not bias our estimators, but increase their variances.
In the interests of space, we do not present these simulated results here.
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states is P(1 = (0.7, 0.3)ᵀ, and the transition matrices are

P1 ≡ P(2 |(1 =
©«
0.96 0.04

0.02 0.98

ª®®¬ , P2 ≡ P(3 |(2 =
©«

0.9 0.1

0.07 0.93

ª®®¬ , P3 ≡ P(4 |(3 =
©«
0.8 0.2

0.3 0.7

ª®®¬ .
We also allow for spatial dependence (and serial correlation) in the misclassification proba-

bilities, Pr[.8C |(8C], in a parsimonious way. To that end, we introduce the variable /8C ∈ {−1, 1},

which captures the difficulty is classifying the land cover correctly: when /8C = 1, the proba-

bility that the machine learning classifier makes a mistake is higher than when /8C = −1. We

then adjust equation (2) by conditioning it on /8C , so that Pr[.8C+1, (8C+1 | {.8C−ℎ, (8C−ℎ}ℎ≥0 , /8C+1] =

Pr [.8C+1 |(8C+1, /8C+1] × Pr [(8C+1 |(8C]. Abusing notation slightly, we set the misclassification proba-

bilities to be:

Pr [.8C | (8C , /8C = −1] =

0.99 0.01

0.01 0.99

 , and
Pr [.8C | (8C , /8C = 1] =


0.81 0.19

0.39 0.61

 .
In our simulations, half of the pixels are difficult to classify (i.e. Pr[/8C = −1] = Pr[/8C = 1] = 1/2),

implying an overall misclassification probabilities of

Υ = 0.5 · Pr [.8C | (8C , /8C = 1] + 0.5 · Pr [.8C | (8C , /8C = −1] =

0.9 0.1

0.2 0.8

 , (D15)

which equals the misclassification probabilities in the basic setup, presented in Section D.1.

We do not include /8C in the data set, so when we estimate the model, we do not condition on

/8C . In this way, any spatial dependence and serial correlation in /8C will be translated into spatial

and serial correlation in misclassification. Note that both MD and ML estimators will estimate the

(unconditional) Υ given by (D15). (Note also that had we conditioned on /8C when estimating the

parameters, we would return to the standard HMM model presented in the main text – but now we
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would be able to estimate the (conditional on /) misclassification probabilities separately.)

We model spatial dependence in /8C in the following way. First, we assume /8C is generated

according to the Ising model, which specifies a join distribution of binary random variables over

the lattice in a given time period C (see, e.g., Hastie et al., 2015, Chapter 9).3 The degree of spatial

correlation is controlled by the Ising “temperature” parameter, denoted here by V. When V = 0,

there is no spatial correlation; when V > 0 there is positive spatial correlation, and the higher the

value that V takes, the stronger the spatial correlation. Misclassifications are spatially (but not

temporally) correlated when V > 0 and /8C is i.i.d. over time. In our simulations, we set either

V = 0 or V = 2. (The qualitative results are similar when we consider other values for V.)

To incorporate serial correlation in misclassifications, we allow /8C to correlate over time;

to simplify, we assume perfect correlation (i.e., /8C is time-invariant). In this way, we force

misclassification probabilities to depend on past values of (.8C , (8C).4 Importantly, when that

happens, themainHMMassumption – equation (2) – is violated and our correction is not guaranteed

to work.

Results. We start discussing the results for when there is spatial correlation in the true transition

process, Pr[(8C+1 |(8C], but no spatial, nor serial correlation in misclassification. Figure E7 presents

an example of the initial distribution, and the evolution of both the true and the observed land uses

in the lattice, in panels (a) and (b), respectively. It is clear from the figure that the pixels’ outcomes

are spatially correlated, and that misclassifications have no spatial nor temporal dependence (given

that the same probability distribution Pr[.8C |(8C] holds everywhere and in all time periods).

3Specifically, take the vector / = (/1, . . . , /# ), with /8 ∈ {−1, 1} for all pixels 8. (We omit the time subscript
to simplify.) The Ising model sets the joint probability distribution for / to be Pr[/ = I] = exp{� (I) }

�
, where

� (I) = ℎ∑
8 I8+V

∑
8, 9 I8I 9 , which is called theHamiltonian function; and � =

∑
I exp� (I), which is the normalization

constant. The parameter ℎ indicates whether /8 = 1 is more likely (when ℎ > 0) or whether /8 = −1 is more likely
(when ℎ < 0); we set ℎ = 0 in our simulations to retain symmetry. The temperature parameter is V, indicating positive
correlation across pixels in the lattice (when V > 0), or negative correlation (when V < 0), or no correlation (when
V = 0).

4That is because /8C is not part of the data set, as mentioned previously: had we conditioned on /8C , the serial
correlation in misclassification would disappear. This is similar to a linear panel data model with fixed effects. To see
the connection, suppose we have .8C = /8 + Y8C , where /8 is a fixed effect and Y8C is i.i.d. shocks. Then, conditional on
/8 , there is no serial correlation in .8C ; but there exists serial correlation in .8C when we do not condition on /8 (since
.8C = .8C−1 + Y8C − Y8C−1).
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Figure E8 presents the estimated results across the simulations. As expected, both MD and

ML estimators are unbiased for both the transition and misclassification probabilities, given that

the HMM is correctly specified at the pixel level, while the frequency estimator is severely biased.

In addition, since neither the MD nor the ML estimators make use of all the possible information

available (namely, the pixels’ spatial correlation), their variances are larger here when compared to

the i.i.d. case presented in Section D.2.

Next, we add spatial dependence in misclassification (but still no serial correlation). As

mentioned previously, we incorporate the variable /8C in the data generating process (but not in the

data), assuming it is i.i.d. over time and fixing the “temperature” parameter to be V = 2. Figure E9

presents an example of the evolution of the true land uses (in panel (a)), the distribution of /8C (in

panel (b)), and the evolution of the observed land uses (in panel (c)). The evolution of true land

use is similar to the previous example; the distribution of /8C is highly correlated in the lattice as

well, leading to spatially correlated classification errors in any given time period, as can be seen by

contrasting the panels (a) and (c) of the figure.

Figure E10 presents the estimated results for this scenario. As before, both MD and ML

estimators are unbiased. But now they have even higher variances as neither spatial correlation

in land uses nor in misclassification are incorporated explicitly in the estimation strategy. The

frequency estimator continues to be highly biased for transitions.

In the next simulations, we drop the spatial correlation in /8C and make this variable constant

over time. This translates into misclassifications that are serially (but not spatially) correlated.

Importantly, this renders the HMMmodel misspecified. Figure E11 shows the evolution of the true

land uses (in panel (a)), the distribution of /8C (in panel (b)), and the evolution of the observed land

uses (in panel (c)) for one simulated example. We observe the same patterns as in the previous

case with two differences: there is no spatial correlation in classification errors, but the errors

tend to persist over time. In terms of the estimated results, presented in Figure E12, the MD and

ML estimators are now biased for transitions (though not substantially) and for misclassification

probabilities (particularly so for Pr[.8C = 2|(8C = 2]). Yet, the frequency estimator is significantly
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more biased than the HMM corrections.

Finally, we incorporate spatially dependent and time-invariant /8C , imposing therefore both

spatially and serially correlated misclassifications. Figure E13 shows one simulated example, and

Figure E14 presents the estimated results. As expected, theMD andML estimators are biased, given

that the HMMmodel is misspecified, but not substantially so for the transition probabilities (though

it is more biased for the misclassification probabilities). Once again, the frequency estimator shows

significant biases for the estimated transition process.

D.5 Regression Analysis

We extend our baseline Monte Carlo simulations to illustrate an application of the HMM in a

regression context. We simulate a policy that reduces the deforestation rate in the regions where it

is implemented and compare the HMM and raw data approaches to estimating the treatment effect.

For this application, we use the baseline HMM from Section D.1 with two land uses observed

in four periods and the transition and misclassification matrices as described above. We assume

that this model describes land use transitions in 100 regions and that within each region we observe

1000 pixels. The only change from the baseline set up is that in the transition from ) = 3 to ) = 4

the probability of transitioning from state 1 to state 2 is 0.1 instead of 0.2 in 20 of the regions

(the “treated” regions). For concreteness, we consider transition rates from state 1 to state 2 as the

“deforestation rate.”

The researcher is interested in estimating the difference in this transition probability between

the treated and untreated regions and uses a simple cross-sectional regression framework,

�< = U + V)< + n<,

where �< is the deforestation rate in region <, )< is a binary variable reflecting whether the region

was treated, and n< is the error term, with � [n<)<] = 0. In this setup, the researcher would use

the period four deforestation rates from these 100 regions in the estimation. This framework could
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easily be extended to difference-in-differences type regression analysis, but for simplicity we do

not here.

In Figure E15, we show the distribution of the estimated parameters U (the baseline) and V (the

“treatment effect”) from 100 Monte Carlo simulations. We consider three different scenarios:

Ground Truth. The estimated deforestation rate �A is based on ground truth. In the context of

the model, this is Pr[(4 = 2|(3 = 1].

HMM-ML. The estimated deforestation rate �A is based on the HMM maximum likelihood

estimate for Pr[(4 = 2|(3 = 1].

Observations. The estimated deforestation rate �A is based upon the raw classifier, without apply-

ing the HMM correction. In the context of the model, this corresponds to Pr[.4 = 2|.3 = 1].

We find that the ground truth data yields a precise and unbiased estimate of the true treatment

effect of V = −0.1 and of the baseline U = 0.2. The HMM-ML approach gives a precise estimate

of the baseline deforestation rate and a close to unbiased measure of the treatment effect. The raw

classifier yields biased estimates of the baseline deforestation rate and of the treatment effect, with

an estimated effect that is closer to zero than the truth. This further illustrates the point from Section

B.1 of this appendix that misclassifications can lead to biased parameter estimates in regressions,

even when the measurement error is in the dependent variable.

E Additional Details on the Carbon Stock Application

E.1 Distribution of Forest Age

In Figure E16, we plot the cumulative distributions of the forest age for both the raw and the

HMM-based approaches. The graph illustrates that the forest age predicted by the raw data is

significantly younger than that predicted by the HMM-based estimates. That is a direct result of

the high deforestation and reforestation rates obtained from the raw data: a pixel is more likely to
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be deforested and then reforested, leading to a young forest, while the HMM estimates suggest that

a pixel is less likely to be disturbed, resulting in older forests.

E.2 Relationship Between Carbon and Forest Age

We estimate the carbon stock for a given forest age using data on the 2017 carbon stock from

Englund et al. (2017) and our HMM-based estimates of forest age for each pixel. First, we show

informally the relationship between the carbon stock and the age of the forest for 2017 in Figure

E17. As expected, the graph shows an increase in the carbon stock as the forest age.5

Next, we estimate the following regression model:

2B8 = U + V 5 >A4BC8 + W 08 � (08 < 0̄<0G) 5 >A4BC8 + X � (08 > 0̄<0G) 5 >A4BC8 + D8,

where 2B8 is the carbon stock of pixel 8 in 2017; 5 >A4BC8 is an indicator variable for whether the

pixel is classified as forest in 2017 in the HMM-Viterbi sequence; 08 is the forest age of pixel 8 in

2017 given from the HMM-Viterbi sequence; 0̄<0G is the maximum age we can detect given our

data (which corresponds to 32 years old); � (.) is the indicator function; D8 is an idiosyncratic error

term; and (U, V, W, X) are the regression parameters.

In this regression, (a) we allow for forest to have a different baseline level of carbon from

non-forest, captured by the coefficient V; (b) we model a linear relationship between the age of the

forest (between 1-32 years old) and the carbon stock, captured by W; and (c) we allow for a different

mean level of carbon for forest that is over 32 years old (i.e., pixels that were classified as forest for

all years of our sample), captured by X.

The results are presented in Table E2. We find that the average baseline level of carbon in

forests is approximately 4 tons greater than in non-forest pixels. Every additional year the pixel

remains forested adds approximately 0.6 tons of carbon, on average. For forests that are over 32

years old, the average amount of carbon in a pixel is approximately 51.5 tons (= U + V + X).

5We do not include in this graph any points that were classified as forest for the entirety of our sample, since we
do not know their age.
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N=100 N=500 N=1000 N=10000
Freq MD ML Freq MD ML Freq MD ML Freq MD ML

Bias -0.076 -0.022 -0.031 -0.072 -0.013 -0.014 -0.070 -0.005 -0.008 -0.071 -0.002 -0.007
%(1 = .9 s.d. 0.039 0.081 0.057 0.018 0.038 0.028 0.012 0.024 0.020 0.004 0.007 0.008

RMSE 0.085 0.083 0.064 0.074 0.040 0.031 0.071 0.024 0.022 0.071 0.008 0.011

Bias 0.008 -0.018 -0.004 -0.008 -0.003 -0.006 -0.001 -0.004
Υ(2, 1) = .1 s.d. 0.053 0.040 0.018 0.014 0.011 0.010 0.004 0.004

RMSE 0.053 0.043 0.018 0.016 0.012 0.011 0.004 0.006

Bias 0.098 -0.058 -0.007 -0.025 -0.008 -0.020 -0.002 -0.006
Υ(1, 2) = .2 s.d. 0.198 0.108 0.096 0.059 0.051 0.044 0.017 0.017

RMSE 0.220 0.122 0.096 0.064 0.051 0.048 0.017 0.018

Bias 0.113 0.028 0.027 0.106 0.010 0.008 0.104 0.007 0.006 0.104 0.002 0.004
%1(1, 2) = .04 s.d. 0.039 0.065 0.055 0.016 0.027 0.021 0.011 0.017 0.014 0.004 0.006 0.005

RMSE 0.120 0.070 0.061 0.107 0.028 0.022 0.105 0.018 0.015 0.104 0.006 0.006

Bias 0.528 0.149 0.189 0.540 0.081 0.115 0.539 0.056 0.090 0.543 0.023 0.069
%1(2, 1) = .02 s.d. 0.136 0.227 0.219 0.058 0.135 0.123 0.040 0.090 0.081 0.012 0.049 0.041

RMSE 0.545 0.271 0.288 0.543 0.157 0.168 0.541 0.106 0.121 0.544 0.054 0.080

Bias 0.093 0.025 0.012 0.089 0.001 0.004 0.089 0.001 0.002 0.090 0.000 0.003
%2(1, 2) = .1 s.d. 0.043 0.103 0.062 0.019 0.031 0.028 0.012 0.019 0.018 0.005 0.007 0.007

RMSE 0.103 0.105 0.063 0.091 0.031 0.028 0.090 0.018 0.018 0.090 0.007 0.007

Bias 0.479 0.113 0.104 0.474 0.045 0.049 0.468 0.032 0.036 0.468 0.006 0.018
%2(2, 1) = .02 s.d. 0.120 0.192 0.154 0.052 0.082 0.070 0.037 0.067 0.047 0.011 0.026 0.016

RMSE 0.493 0.222 0.185 0.476 0.094 0.085 0.469 0.074 0.059 0.468 0.026 0.024

Bias 0.078 0.054 0.020 0.069 0.002 0.003 0.072 0.002 0.005 0.072 0.001 0.004
%3(1, 2) = .2 s.d. 0.057 0.152 0.083 0.022 0.049 0.036 0.017 0.029 0.026 0.005 0.009 0.009

RMSE 0.096 0.160 0.085 0.072 0.049 0.036 0.074 0.029 0.026 0.072 0.010 0.010

Bias 0.352 0.062 0.089 0.359 0.044 0.046 0.363 0.025 0.040 0.363 0.006 0.021
%3(2, 1) = .02 s.d. 0.097 0.141 0.127 0.040 0.089 0.072 0.029 0.057 0.053 0.009 0.024 0.019

RMSE 0.365 0.154 0.154 0.361 0.098 0.085 0.364 0.062 0.066 0.364 0.025 0.028

Table E1: Baseline Monte Carlo Simulation Results
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Carbon Stock
U 8.929∗∗∗

(0.009)

V 4.195∗∗∗
(0.039)

W 0.628∗∗∗
(0.002)

X 38.318∗∗∗
(0.042)

Observations 11,770,115
R2 0.317

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data as described in text. Regression uses data from 2017.

Table E2: Relationship Between Carbon Stock and Forest Age

Figure E1: Map of Mato Grosso State and the Embrapa Sample Points
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Figure E2: Map of Brazil and the Mapbiomas Sample Points, in the Brazilian Atlantic Forest
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(a) Transition Probability, Pr[(8C+1 = 2|(8C = 1], for C = 1, 2, 3

(b) Misclassification Probability, Pr[.8C = 2|(8C = 1]

Figure E3: Baseline Monte Carlo Simulation Results
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(a) Transition Probability, Pr[(8C+1 = 2|(8C = 1], for C = 1, 2, 3

(b) Misclassification Probability, Pr[.8C = 2|(8C = 1]

Figure E4: Baseline Monte Carlo Simulation Results

31



(a) Transition Probability

(b) Misclassification Probability

Figure E5: Monte Carlo Results for Varying Misclassification Probabilities
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(a) Transition Probability

(b) Misclassification Probability

Figure E6: Monte Carlo Results for Varying Transition Probabilities
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(a) Distribution of True Land Use, (8C

(b) Distribution of Observed Land Use, .8C

Figure E7: Monte Carlo: Spatially Correlated Land Use, an Example
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(a) Transition Probabilities

(b) Misclassification Probabilities

Figure E8: Monte Carlo: Spatially Correlated Land Use Results
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(a) Distribution of True Land Use, (8C

(b) Distribution of /8C

(c) Distribution of Observed Land Use, .8C

Figure E9: Monte Carlo: Spatially Correlated Land Use and Misclassifications, an Example
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(a) Transition Probabilities

(b) Misclassification Probabilities

Figure E10: Monte Carlo: Spatially Correlated Land Use and Misclassifications Results
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(a) Distribution of True Land Use, (8C

(b) Distribution of /8C

(c) Distribution of Observed Land Use, .8C

Figure E11: Monte Carlo: Spatially Correlated Land Use and Serially Correlated Misclassifications, an
Example 38



(a) Transition Probabilities

(b) Misclassification Probabilities

Figure E12: Monte Carlo: Spatially Correlated Land Use and Serially Correlated Misclassifications Results
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(a) Distribution of True Land Use, (8C

(b) Distribution of /8C

(c) Distribution of Observed Land Use, .8C

Figure E13: Monte Carlo: Spatially Correlated Land Use, and Spatially and Serially Correlated Misclassi-
fications, an Example 40



(a) Transition Probabilities

(b) Misclassification Probabilities

Figure E14: Monte Carlo: Spatially Correlated Land Use, and Spatially and Serially Correlated Misclassi-
fications Results
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Figure E15: Regression Monte Carlo Results

Figure E16: Forest Age Distribution
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Figure E17: Carbon Stock by Age of Forest
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