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Abstract

The Brazilian Amazon plays a crucial role in regulating global climate and preserving biodi-

versity, yet it faces mounting pressures from deforestation, driven primarily by cattle ranching.

The expansion of pastureland is shaped by cattle’s dual role as both output and capital stock,

leading to nontrivial dynamic patterns. We develop a structural empirical model of ranchers’

cattle management and land use decisions that accounts for deforestation costs, herd dynamics,

and price expectations. The model estimates reveal that deforestation is inelastic to tempo-

rary shocks to beef prices but highly elastic to persistent price changes, rationalizing existing

estimates in the literature. Finally, we simulate various policies and discuss the implications

of highly price-elastic deforestation.

Keywords: Cattle, Dynamics, Deforestation, Amazon, Carbon Emissions

JEL Codes: C13, Q12, Q15, Q18, R14

∗We would like to thank Victor Aguirregabiria, Phil Haile, Ariel Pakes, Lisa Tarquinio, and various conference and
seminar participants for helpful comments and discussions. We also thank Richard Chen, Antonio Cozzolino, and Marguerite
Obolensky for outstanding research assistance. Financial support from the NYU Stern Center for Sustainable Business and
University of Toronto Mississauga are gratefully acknowledged. All remaining errors are our own. The views expressed in
this article are those of the authors. They do not necessarily represent those of Amazon nor the Federal Trade Commission
or any of its Commissioners.

†Affiliations: Paul T. Scott, Massachusetts Institute of Technology (email: ptscott@mit.edu); and Eduardo Souza-
Rodrigues, University of Toronto (email: e.souzarodrigues@utoronto.ca); and Skand Goel, Amazon (email: skand-
goel50@gmail.com).

1



1 Introduction

Deforestation is responsible for over 10% of global greenhouse gas emissions (Sims, Gibbs and Harris,

2025). Numerous policies have been proposed to curb deforestation, including encouraging more efficient

cattle management, providing incentives for forest protection, and beef taxes. Evaluating the effectiveness

of these policies requires understanding how deforestation responds to prices—for example, highly elastic

deforestation would lead to high rates of indirect land use change (Searchinger et al., 2008; Roberts and

Schlenker, 2013) and undermine the effectiveness of payments for forest protection (Gan and McCarl,

2007). However, the evidence on deforestation-price elasticities is seemingly contradictory: intertemporal

analysis suggests that deforestation is highly price inelastic (Hargrave and Kis-Katos, 2013; Harding et al.,

2021) while cross-sectional analysis indicates that it is highly price elastic (Souza-Rodrigues, 2019).

In the context of deforestation in the Brazilian Amazon, we can reconcile these seemingly contradictory

findings by modeling of the root cause of deforestation: cattle ranching.1 Cattle serve a dual role in

ranchers’ production decisions, as both consumption goods and a capital stock (Jarvis, 1974; Rosen, 1987).

In this setting, a transitory price increase leads ranchers to cull more of their herd to take advantage of

the high price. On the other hand, a persistent price increase encourages ranchers to cull fewer (female)

cattle, increasing their herd size and reducing beef output in the short term in order to earn higher profits

in the future (Rosen, Murphy and Scheinkman, 1994).

Deforestation dynamics largely track these cattle dynamics. As herd size grows, ranchers face increas-

ing costs to manage their herd on a fixed amount of land, and deforestation occurs to create more pasture.

Given that a transitory price increase leads to a smaller herd size, it reduces deforestation pressure. Given

that a persistent price increase triggers herd growth, it increases deforestation pressure. Consequently,

elevated prices can be associated with increased or decreased deforestation rates, depending on the nature

of price variation.

We estimate our model using panel data on deforestation and cattle herds for the Brazilian Amazon

from 2000-2020. Our estimation procedure accounts for ranchers’ dynamic decision making; we use the

Euler equations from the model as estimating equations. We also incorporate pasture land prices for

estimation, relying on the assumption that land prices equal ranchers’ marginal value of land on average.

While there are many ways to define a long-run elasticity in the context of a dynamic model, our

estimates indicate that deforestation is highly price elastic in the long run. For example, we find that

deforestation policy functions have an elasticity with respect to the mean beef price of around 3. Similarly,

in equilibrium simulations, a policy that (persistently) decreases mean beef price received by ranchers by

17% leads to more than 77% reduction in deforestation rates, indicating an elasticity over 4. However,

consistent with Rosen, Murphy and Scheinkman (1994), we find that that there can be a very weak

partial correlation between deforestation and beef prices—that is, deforestation can appear to be very

price inelastic when these correlations are mapped to elasticities. We propose that this explains why

1Almeida et al. (2016) indicate that pasture land conservatively accounts for 62% of deforested land in Brazilian Amazonia,
or almost 90% of deforested land with an identified human use.
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regression analysis on actual data suggest that deforestation is price inelastic (Hargrave and Kis-Katos,

2013; Harding et al., 2021), while the cross-sectional of Souza-Rodrigues (2019) points to highly price-

elastic deforestation.

We perform policy simulations to explore the implications of this high long run elasticity for Pigouvian

deforestation taxes (or other policy initiatives) and policy design more broadly. A deforestation tax set

equal to some estimates of the social costs of deforestation would be sufficient to stop deforestation

entirely. (In these estimates, the social value of carbon in a hectare of Amazonian rainforest is much

larger than the value of a hectare of pastureland). Furthermore, these taxes will lead to higher beef prices

for producers due to the increased scarcity of pastureland. Many have discussed the political challenges of

implementing policies that impose costs on voters (and farmers in particular), but our results suggest that

the incumbent ranchers may potentially benefit from policies that make deforestation more costly. While

higher prices and profit per hectare would benefit incumbent ranchers, the reduced area of pasture land

would eventually lead to lower total ranching income. We estimate an estimated loss of ranching income

to Brazil of $1331.6 M/yr. Given that forest preservation programs like the REDD+ already receive

hundreds of millions of dollars in funding per year, it may be feasible for other countries to compensate

Brazil for this loss of income.

More broadly, the finding that deforestation is highly price elastic in the long run has important

implications for policy design. For example, policies such as those supporting biofuels tend to increase

agricultural commodity prices, potentially inducing agricultural expansion around the world. Addition-

ally, policies that aim to protect forests by paying landowners for conservation can be undermined by

equilibrium effects; reducing the amount of land available for agricultural production (or potential pro-

duction) can lead to higher commodity prices, inducing other land to be converted into agricultural

production. These “leakage” effects are more pronounced when land use is highly elastic. Back-of-the-

envelope calculations using our estimates suggest that a policy that decreases deforestation locally, may

have only 20% of its impact globally due to this “leakage”.

Related Literature. Early studies, such as Jarvis (1974) and Rosen (1987), examined the dual role of

cattle as both consumption and capital goods, highlighting their influence on supply responses and pro-

duction dynamics. Subsequent work by Favaro (1990), Rosen, Murphy and Scheinkman (1994), Mundlak

and Huang (1996), and Aadland (2004) analyzed the time-series properties of cattle production across

countries with varying technologies, including Argentina, the United States, and Uruguay, to explore the

role of cattle management in shaping industry dynamics. Our study builds on this literature by integrat-

ing land-use decisions within the critical context of Amazonian deforestation, offering new insights into

the interaction between cattle cycles and environmental impacts.

An emerging literature has been emphasizing the importance of dynamic considerations in understand-

ing land-use changes. This literature builds upon the contributions in industrial organization, including

but not limited to Hendel and Nevo (2006) and Kalouptsidi (2014). Scott (2013) demonstrates the im-
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portance of incorporating dynamic models to accurately estimate land-use elasticities, focusing on crop

decisions in the United States. Sant’Anna (2024) examines the expansion of sugarcane cultivation in

Brazil in response to biofuel policies. Hsiao (2024) explores the role of policy coordination and commit-

ment in shaping the palm oil industry in Indonesia and Malaysia. Building on the dynamic frameworks

of Scott (2013) and Kalouptsidi, Scott and Souza-Rodrigues (2021), Araujo, Costa and Sant’Anna (2024)

model land-use choices among crops, pasture, and forest using a logit framework, where the crops/pasture

margin helps them to estimate deforestation elasticities and the carbon-efficient forest cover in the Brazil-

ian Amazon. Similarly, Assunção et al. (2023) address Amazonian deforestation, with a particular focus

on the uncertainty of location-specific productivities when assessing the impacts of carbon pricing. Our

study complements these contributions by introducing cattle management dynamics, a crucial yet under-

explored margin for understanding deforestation patterns in the Amazon.

A third strand of literature has concentrated on deforestation and its interaction with commodity

prices based on static models. Souza-Rodrigues (2019) uses cross-sectional variation to examine the

demand for deforestation in private properties and the long-run implications of permanent conservation

policies. Static models that incorporate general equilibrium effects include Pellegrina (2022), Dominguez-

Iino (2024), and Barrozo (2024).2 These models emphasize the spatial distribution of land use and the

associated equilibrium effects in a tractable way but abstract from forward-looking behavior, which is the

central focus of our paper.

Several recent studies have investigated the impact of monitoring and the role of institutions, includ-

ing Gandour, Souza-Rodrigues and Assunção (2019), Burgess, Costa and Olken (2019), Harding et al.

(2021), and Assunção et al. (2022). Payments for ecological services programs have also been analyzed

in various contexts by Alix-Garcia, Sims and Yañez Pagans (2015), Jayachandran et al. (2017), Jack and

Jayachandran (2018), and Simonet et al. (2019). Similar to the static models discussed earlier, these

studies abstract from the role of forward-looking agents in shaping deforestation decisions.

A common feature of the literature on Amazonian deforestation, including Hargrave and Kis-Katos

(2013), Assunção and Rocha (2019), and Assunção et al. (2022), is that deforestation regressions often

yield coefficients on beef prices that are small (inelastic), statistically insignificant, and sometimes nega-

tive. Ultimately, we will argue that such regression do not capture the long-run price responsiveness of

deforestation.

2 Institutional Background

The Amazon Rainforest is an immense region nearly ten times the size of California, two-thirds of which is

in the Brazilian territory. Before the 1960s, the Brazilian Amazon was sparsely populated, characterized

by open access and subsistence-based local economies centered on rubber and Brazil nut extraction (see,

2Dominguez-Iino (2024) and Barrozo (2024) examine the market power of agricultural supply chains and its impact on
deforestation. Farrokhi et al. (2024) extends trade general equilibrium models to include dynamic land use change and
deforestation, albeit with myopic agents.
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e.g., Souza-Rodrigues (2019) for further details). Cattle ranching in the area began only after Brazil’s

military dictatorship launched policies in the 1960s and 1970s to encourage settlement in the region, with

the dual objectives of securing national borders and promoting regional development. It was not until

the late 1980s that environmental concerns began to influence policy.

Land Use, Tenure and Regulation. Approximately 20 percent of the Brazilian Amazon has been

deforested, totaling over 700,000 square kilometers—an area larger than Texas. The majority of cleared

land is used for agriculture, with more than 70% designated as pasture and roughly 8 percent allocated

to crop cultivation (Almeida et al., 2016).

About half of the Amazon is protected through various legal designations, including indigenous terri-

tories and conservation units such as national parks, extractive reserves, and areas of ecological interest.

Deforestation in these areas is either strictly regulated or entirely prohibited. The remainder of the

Amazon consists of undesignated public lands, where deforestation is forbidden, and private lands, which

make up approximately 20 percent of the region’s total area, according to the 2006 Agricultural Census

(IBGE, 2006). Although deforestation on private land can be legal if authorized and in accordance with

the Forest Code, empirical evidence suggests limited compliance with these regulations, with much of the

deforestation in the Amazon occurring illegally (Borner et al., 2014; Rajão et al., 2020).

Over the past 25 years, two key policy initiatives have significantly influenced deforestation control

in the region: the introduction of satellite monitoring and the Priority List, both integral to the Action

Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm) launched in 2004.

The DETER satellite system, developed by the Brazilian Institute for Space Research (INPE), employs

high-frequency remote sensing to monitor forest loss, enabling the almost-real-time regular processing

of land-use images and generating deforestation alerts for law enforcement. This innovation has been

instrumental in curbing deforestation rates (Assunção, Gandour and Rocha, 2023). Introduced in 2008,

the Priority List targets municipalities with high deforestation levels, focusing regulatory efforts on these

“blacklisted” areas. Within its first two years, this policy reduced deforestation by approximately 40%

(Assunção et al., 2022). These changes fundamentally reshaped conservation policies in the region: Prior

to the mid-2000s, the Brazilian Environmental Protection Agency’s (IBAMA) monitoring operations in

the Amazon relied primarily on data collected by its headquarters and regional offices, with land and

air patrols being limited in effectiveness due to the vast size of the region and the risks faced by law

enforcement.

Cattle Industry Structure. Cattle ranching in the Amazon is characterized by extensive grazing,

with feedlots comprising only 1.5% of the cattle stock in the region (IBGE, 2006). Cattle reach adulthood

at around three years old, which is the slaughter age for males and the breeding age for females. The

production process consists of two main stages: breeding, where calves are raised, and fattening, where

cattle are prepared for slaughter.3 While some farms specialize in one stage, others—referred to as

3Cattle used for milk production account for only about 4% of the total Amazonian herd (IBGE, 2006, 2017).
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complete-cycle farms—manage both. Trade between breeding and fattening farms is common but limited

by the costs and risks of transporting live animals, particularly younger ones, who are more susceptible

to stress and injury during transit.

The Amazonian cattle industry is composed of nearly half a million farms (IBGE, 2006, 2017), most

of which are price takers selling cattle on the spot market. These cattle are typically sold to local

slaughterhouses, which are owned by meatpackers, part of a concentrated meatpacking industry. Once

processed, the beef is either exported—approximately 22% of the total production—or sold to domestic

markets, accounting for about 78% of the supply. Domestic sales are primarily directed to supermarkets

outside the Amazon region. The price of beef is largely determined by international market conditions,

adjusted for transportation costs to the port.

3 Data and Descriptive Evidence

3.1 Data Sources

The data used in this study comes from various sources. Land use and deforestation data are obtained

fromMapbiomas, an annual panel data at a 30-meter resolution from 1985 to 2023, including classifications

for primary forest, pasture (good vs. degraded), cropland, secondary forest, and other land types. Our

primary variable of interest from Mapbiomas is the deforestation rate by municipality and year, which we

calculate as the area of gross forest loss in a given year divided by the total municipality area.

Our second primary dataset comes from IBGE’s Municipal Livestock Survey (PPM-IBGE), which

provides cattle counts by municipality and year.4

Beef prices, exchange rates, and price index are taken from the CME Group, B3, Brazilian Central

Bank, and IBGE. Local prices are obtained by subtracting transportation cost from the international

prices. To calculate transport costs, we follow a strategy similar to Souza-Rodrigues (2019) in using data

on transportation networks from the Brazilian Ministry of Transportation, information on ports used for

exporting beef from the Ministry of Industry, Foreign Trade, and Services, and freight values and gas

prices from SIFRECA and the Brazilian National Agency for Petroleum, Gas, and Biofuels.

In addition to these primary data sources, several other datasets are used. Municipality-level land

price data for various types of agricultural land (2000–2012) comes from ANUALPEC. Agricultural yield

data comes from FAO-GAEZ. Zootechnical indices are provided by Amigos da Terra (2020). Geographic

boundaries are provided by IBGE. Consumer price indices for the US and Brazil are obtained from the

World Bank.

Our final dataset includes 754 municipalities in the Legal Amazon. All variables are available for

2002–2020. Table 1 presents descriptive statistics for the sample used for estimation; the coverage of this

sample is 2002-2018 because our estimating equations use two-year leads of some variables. On average

(unweighted averages across municipalities), the annual deforestation rate across municipality-years is

4Cattle data was downloaded from https://sidra.ibge.gov.br/tabela/3939.
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about 0.98% of the total municipality area. Pasture accounts for an average of 33.39% of municipal land

area, while crops cover approximately 4.27%.

The average spot price of beef during the sample period is $3.48/kg (live weight), with transportation

costs accounting for about 4.25% of the beef price. Appendix B.1 explains the calculation of transportation

costs in detail. Pastureland is priced at an average of $1059.5 per hectare. For most estimates of the

social cost of carbon, the pasture land values we observe are far lower than the value of carbon released

by deforestation, which is typically estimated as having a value of over $10,000 per hectare.5 The largest

pasture land values in the data are just over $3,500 per hectare.

Table 1: Summary Statistics

count mean sd min max

Deforestation rate (prop of total area) 12773 0.010 0.009 0.0001 0.084
Share of area in pasture 12773 0.334 0.242 0.0013 0.939
Share of area in crops 12773 0.043 0.087 0.0000 0.649
Stocking density (head/ha) 12773 0.934 0.577 0.0000 3.833
Stocking density capacity (head/ha) 12773 4.021 0.398 3.1239 5.092
Spot price at port (USD/kg live weight) 12773 3.480 0.540 2.5383 4.495
Transportation cost to port (USD/kg live wt) 12773 0.144 0.086 0.0321 0.434
Price of pasture land (USD/ha) 902 1059.495 675.890 29.9642 3557.450
Year 12773 2010.018 4.895 2002.0000 2018.000

Notes: Means are unweighted across municipalities and years. Dollar values are based on deflating BRL to 2012
levels and then converting to USD using the 2012 exchange rate of .5473 USD per BRL.

Figure 1 illustrates the evolution of international beef prices over time. It also highlights the range

of net prices, which are calculated by subtracting transportation costs from the international prices.

The figure clearly shows that the time variation in international prices far outweighs the cross-sectional

variation caused by transportation costs.

Figure 2 illustrates the decline in deforestation rates between 2004 and 2012, following a peak in

2004, despite rising prices during the same period. While other factors, including policy changes, also

influence these trends, this suggests a negative correlation between price shocks and deforestation, a point

we explore further in the next subsection.

Focusing on the Amazonian states of Mato Grosso and Pará, Figure 3 illustrates that the Brazilian herd

is gradually increasing, with the exception of a pronounced dip from 2007 to 2008. This dip coincides

with a the late-2000s agricultural commodity price spike, and it is suggestive that ranchers may have

responded to the temporary price increase by increasing slaughter rates, a dynamic response that will be

part of our analysis below.

5For example, Ometto et al. (2023) estimate that the average above-ground biomass in the Brazilian Amazon is 174 Mg
C per hectare. At .434 tonnes of carbon per Mg biomass, we end up with over 270 tonnes of CO2 released per hectare:

174 tonnes biomass

ha

.434 tonnes C

tonne biomass

44 tonnes CO2

12 tonnes C
=

276.9 tonnes CO2

ha
.

At the Biden administration’s carbon price of $51 per tonne of CO2, this implies a social cost of carbon of over $14,000 per
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Figure 1: Beef Prices (net of transport cost) over time
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Notes: The solid blue line represents the price of B3’s soonest expiring live cattle futures contract, adjusted to 2012
BRL using the Brazilian CPI, and then using the 2012 exchange rate of .5473 USD per BRL. The intervals show
the range of net prices after subtracting transportation costs.
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Figure 2: Amazonian deforestation and commodity prices
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Figure 3: Amazonian deforestation and cattle herd
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3.1.1 Reduced-Form Regressions

We now present some descriptive regressions. We begin by regressing the log of deforestation rates on the

log of beef prices, along with control variables and municipality fixed effects, to have a sense of the potential

magnitude of the deforestation elasticity with respect to these prices. The results are shown in Table 2.

In the first column, the estimated relationship is negative but statistically insignificant, suggesting that

prices may have little to no effect on reducing deforestation. This is a counterintuitive finding, particularly

the negative sign, that is yet common in the literature; see e.g., Hargrave and Kis-Katos (2013), Assunção

and Rocha (2019), Harding et al. (2021), and Assunção et al. (2022).

Table 2: Descriptive Deforestation Regressions

(1) (2) (3) (4)
ln(DF) ln(DF) ln(DF) ln(DF)

ln(Spot Price) -0.179 -1.471* 1.150
(0.207) (0.741) (0.853)

ln(1 year Ahead Price) 1.404 -1.506
(0.882) (0.882)

PriorityList -0.425*** -0.327*** -0.232* -0.229*
(0.137) (0.113) (0.114) (0.116)

First 6 Months Rain -0.000258* -0.000221 -0.000278** -0.000188
(0.000133) (0.000129) (0.000119) (0.000114)

Dry Season Length -2.41e-05 5.74e-05 3.99e-05 -8.74e-05
(0.000209) (0.000196) (0.000192) (0.000177)

Cattle Density -0.000790*** -0.000821*** -0.000829*** -0.000848***
(0.000155) (0.000162) (0.000165) (0.000168)

Observations 16,910 16,910 16,910 16,910
R-squared 0.771 0.775 0.783 0.803
Municipality FEs Yes Yes Yes Yes
Time Trend - - Yes -
Year FEs - - - Yes
Annual Clusters Yes Yes Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

In column two, we add one-year-ahead beef futures prices to the regression, which increases the magni-

tude of the coefficient on spot prices substantially and makes it statistically significant. The coefficient on

future prices is negative, with a similar magnitude but statistically insignificant. This seemingly suggests

that while current prices may reduce deforestation, expected price increases may lead to more deforesta-

tion. However, in column three, when we include a time trend, the signs of both coefficients reverse, and

they become statistically insignificant. These results highlight the fragility of the reduced-form regressions

in identifying the elasticity of deforestation with respect to international prices. The last column includes

time dummies, which prevent identification of the impacts of international prices due to collinearity.

In principle, a straightforward approach to disentangle short- and long-run price elasticities would

be explore distinct short- and long-run price variation in the data. However, as illustrated in Figure 4,

hectare. This does not include below-ground carbon released by deforestation.
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there are no clear instances where spot and futures prices move in opposing directions. Even if we had

more independent variation in spot and futures prices, our interest in long-run elasticities comes from

wanting to understand in the impacts of effectively permanent changes in the economic environment, and

one-year ahead futures prices may not be a good proxy for permanent price changes. Futures contracts

for agricultural commodities typically have delivery dates no more than two years in the future.

Figure 4: Futures and spot prices
2

4
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8
$/

kg

01jan2000 01jan2005 01jan2010 01jan2015 01jan2020 01jan2025

Brazil Spot Price Brazil Futures Price
US Spot Price US Futures Price

Notes: US prices come from the CME; Brazil prices from B3. Spot prices are defined as the soonest expiring live
cattle futures contract. Futures prices are defined as the soonest expiring live cattle futures contract with a delivery
date at least nine months in the future. All prices are converted to 2012 levels using their country’s respective CPI.

4 Model of Agriculture in Amazonia

We develop our model at the municipality level, assuming the presence of a representative rancher-

deforester in each municipality (henceforth referred to simply as a ‘rancher’). We could equivalently

assume that there is a representative continuum of ranchers in each municipality (see Appendix A.2).

The rancher engages in both pasture preparation and the complete cattle production cycle, encompassing

breeding, fattening, and preparing cattle for slaughter. We follow Araujo, Costa and Sant’Anna (2024)

in assuming that the decision maker may either formally own, lease, or hold informal property rights to

the land. In essence, the requirement is that they are residual claimants to the net discounted cash flow

generated by their farming operations.
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4.1 Ranching

We let Kmt denote the adult-equivalent cattle herd size in municipality m and year t. Bmt is the amount

of beef produced in municipality m and year t. Ultimately, the cost of holding cattle will depend on the

stocking rate—cattle per hectare—which is given by

kmt ≡
Kmt −Bmt

Armt
,

where Armt is the area of land used for pasture—we will explain below how this is endogenously deter-

mined.

Ranching flow payoffs are given by

πrmt (Bmt, kmt, Armt) = PB
mtY ·Bmt − kmtArmt · Cr

mt (kmt) , (1)

where PB
mt is the local price of beef ($/kg live weight), i.e., the international price net of transportation

costs to ports, Y is the live weight per animal (403.226 kg), and Cr
mt (kmt) is the per-head cost of raising

cattle.

As the density of cattle increases, the capacity of the land to nourish the cattle through grass becomes

strained, and it may be necessary to purchase supplementary feed. High stocking rates also pose other

costs—for example, screwworm parasites become a larger threat and must be monitored more carefully

at higher stocking rates. In addition to the stocking rate, holding costs depend on the productivity of the

land. Specifically, we assume that the relevant factor is the ratio of the stocking rate to a measure of the

productivity of the land, which we denote by Ygm. Ygm represents the annual grass yield (in kilograms

per hectare) obtained from FAO-GAEZ data.6 We model per-head holding costs as follows:

Cr
mt (kmt) = θr0 + θr1

kmt

Ygm
.

θr0 represents a fixed cost component, θr1 controls the sensitivity of holding costs to congestion.

The parameter θc0 can also absorb per-unit processing costs and slaughterhouse markups. That is,

the rancher receives PB
mtY − θc0 per animal slaughtered (not counting congestion costs), and so θc0 can

also capture the gap between the net price of an animal PB
mtY and the wholesale price ranchers actually

receive, in addition to any actual fixed costs that ranchers incur.

4.1.1 Herd Composition and Dynamics

Underlying the aggregate stock variable Kmt are cattle stocks of different ages: K1mt represents calves,

K2mt represents yearlings, and K3mt represents adults. The aggregate herd size is given by Kmt =

γ1K1mt + γ2K2mt + K3mt, where γ1 and γ2 are weights that convert calves and yearlings into adult-

equivalent units. We assume γ1 = .33 and γ2 = .67.

6We take municipality-level averages of FAO-GAEZ’s high-input, rain-fed grass yield.
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Following RMS, we employ a three-period maturation model, based on the idea that cattle take roughly

two years to mature. Formally, the cattle stock evolves according to the following equations:

K1,m,t+1 = g (K3mt −Bmt) (2)

K2,m,t+1 = K1mt (3)

K3,m,t+1 = (1− δ) (K3mt −Bmt) +K2mt (4)

Equation 2 indicate that cows successfully give births to calves at rate g. It can be understood that

maturing steers are always slaughtered, so (K3mt −Bmt) corresponds to the number of adult cows that

are not culled. Equation 3 indicates that calves mature into yearlings. Equation 4 indicates that yearlings

mature into adults, and adult cows are subject to natural mortality at rate δ.

We calibrate g = .6256 and δ = .02 based on zootechnical studies from the Brazilian Amazon (Amigos

da Terra, 2010).7

We let Kmt = (K1mt,K2mt,K3mt) denote the vector of cattle stocks. Note that we previously defined

rancher’s payoffs as a function of the stocking rate and area of pasture land: πrmt (Bmt, kmt, Armt). We

will alternatively express these payoffs as a function of the full cattle stock vector and area of pasture

land, which of course implies the stocking rate: πrmt (Bmt,Kmt, Armt).

4.2 Deforestation

Let Ām denote the area of available land in municipality m. Available land can either be in forest or

pasture. Other land uses, such as urban development and mining, are excluded from Ām by assumption.

In year t, available land is either in agricultural land, denoted by Amt, or in forested land. The amount

of forested land is therefore given by Ām −Amt.

We assume that all deforestation during year t converts forested land directly to agricultural land,

which becomes available for use in the following year. The deforestation rate in year t and municipality

m is given by

Dmt = Am,t+1 −Amt.

The deforestation cost per hectare deforested is given by:

Cd
mt (D) = θD

D

Ām
+ θXXmt.

This function implies that per-hectare deforestation costs are increasing with respect to the share of the

municipality being deforested. This reflects the scarcity of local inputs, particularly labor. Deforestation

typically occurs during the dry season (July-September), and clearing a large portion of a municipality in

7We assume beef quality is invariant to age and breeding history, so mature cows are treated the same as adult males.
This simplification allows us to model all adults as neoclassical capital with an exponential death rate. These assumptions
are necessary because the stock data consist of total head counts, without classification by age or sex, thus eliminating the
need to track the adult age distribution.

14



a single year would require a substantial amount of short-term labor. Increasing average costs may also

arise because the deforestation process likely begins in less costly areas and progresses to more costly ones

over time. Furthermore, these rising costs can serve to rationalize the likely presence of credit constraints,

which can lead to incremental deforestation over the years.

The term θXXmt captures other factors that may influence deforestation costs. In particular, we

include a dummy variable indicating years from 2006 and onward: the enforcement era. Additionally, we

include a dummy variable that indicates whether a municipality was included on Brazil’s Priority List

(“blacklist”), which began in 2008. See Assunção et al. (2023) for a study of the impact of this policy.

For a continuum of agents to aggregate to a representative agent in this context, each agent’s per-

hectare deforestation cost must depend on the total amount of deforestation in their municipality (not

only their own deforestation).

4.3 Rancher’s Problem

Every year, the representative rancher for municipality m chooses two variables the maximize expected

discounted payoffs: the slaughter rate Bmt, and the deforestation rates Dmt.

The representative rancher’s expected discounted payoffs at time t can be expressed as follows:

Et

 ∞∑
s=t

βs
(
πr,m,t+s (Bmt, scms,Kmt, Ams)− Cd

mt(Dmt)
) . (5)

The corresponding Bellman equation is

Vmt (Kmt, Amt) = max
Bmt,Dmt,scmt

πrmt (Bmt, scmt,Kmt, Amt)− Cd
mt(Dmt)

+ βEt

[
Vm,t+1

(
Km,t+1, Am,t+1

)]
,

(6)

with Am,t+1 = Amt +Dmt, and Kmt and B determining Km,t+1 through equations 2-4.

4.4 First-Order Conditions

In this section, we lay out the first-order conditions to the rancher’s problem that we will use for estimation

below. Each of these first-order conditions will be used for estimation in Section 5.
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4.4.1 Cattle Euler Equation

In Appendix A.1.1, we show that the first-order condition with respect to the slaughter rate Bmt can be

expressed as follows:

Y × PB
mt︸ ︷︷ ︸

Revenue from selling cow today

=
d

dBmt

[
(Kmt −Bmt)C

r
mt

(
Kmt −Bmt

Armt

)]
︸ ︷︷ ︸

Cost of holding cow one more period

+β(1− δ)Et

[
Y × PB

m,t+1

]
+ gβ3Et

[
Y × PB

m,t+3

]
︸ ︷︷ ︸

Revenue from selling cow and offspring in the future

+ gβEt

γ1 d

dBm,t+1

(Km,t+1 −Bm,t+1

)
Cr
m,t+1

(
Km,t+1 −Bm,t+1

Ar,m,t+1

)


︸ ︷︷ ︸
Cost of holding offspring as calf

+ gβ2Et

γ2 d

dBm,t+2

(Km,t+2 −Bm,t+2

)
Cr
m,t+2

(
Km,t+2 −Bm,t+2

Ar,m,t+2

)


︸ ︷︷ ︸
Cost of holding offspring as yearling

(7)

This equation captures the trade-off between slaughtering and holding a cow to slaughter it next

period. If slaughtered in time t, the cow will generate revenues Y × PB
mt. If held for one period, it will

generate expected discounted revenues of β (1− δ)Et

[
PB
m,t+1

]
, and its progeny will generate discounted

revenues gβ3Et

[
PB
m,t+3

]
. Holding the cow a year longer also implies extra holdings costs, both from the

cow itself and its offspring.

4.4.2 Deforestation Euler Equation

In Appendix A.1.2, we show that the first-order condition with respect to the deforestation rate Dmt can

be expressed as follows:

d

dDmt
Cd
mt (Dmt)︸ ︷︷ ︸

Current DF costs

= βEt


d

dAr,m,t+1

(Km,t+1 −Bm,t+1)C
r
m,t+1

(
Km,t+1 −Bm,t+1

Ar,m,t+1

)
︸ ︷︷ ︸

Future holding costs

+
d

dDm,t+1
Cd
m,t+1

(
Dm,t+1

)
︸ ︷︷ ︸

Future DF costs

 .

(8)

This Euler equation expresses the idea that there should be indifference (in expectation) between

incurring deforestation costs now and delaying them one period, accounting for the extra holding costs

next period associated with delayed pasture expansion.
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4.5 Land Values

To complete the model, we note that land prices can provide important information about the model

parameters. Specifically, suppose pasture is competitively supplied to the rancher. In this case, the value

of the marginal land determines the land price. This implies that the derivative d
dAmt

Vmt equals the price

of pasture land, denoted as PL
mt. It is important to emphasize that the rancher’s full value function,

Vmt(Kmt, Amt), should not simply be equated with land values in municipality m in year t. The full value

function reflects not only the value of land but also the value of the cattle stock. Instead, it is more

appropriate to equate the rancher’s marginal value of land with observed land prices, which will hold as

an equilibrium condition if land markets are competitive. Under this assumption, we obtain the following

equation:

PL
mt =

dVmt

dAmt
=− d

dAmt

[
(Amt+1 −Amt) · Cd

mt (Amt+1 −Amt)
]

− d

dArmt

[
(Kmt −Bmt) · Cr

mt

(
Kmt −Bmt

Armt

)]
,

(9)

where we rely on the envelope theorem to take the derivative of the value function with respect to the

state variable Amt.

Intuitively, land prices help identify the fixed cost parameter θr1. The fixed cost influences the prof-

itability of pasture land, and the price of pasture land provides information about its profitability.

5 Estimation

At a high level, our estimation strategy is based on the first-order conditions described above (equations

(7), and (8)) and the land value equation (9). We use the generalized method of moments (GMM) to

estimate the cost parameters θD, θr0, and θr1 We let θ = (θD, θr0, θr1) denote the vector of parameters to

be estimated. With three equations and three unknown parameters the model is exactly identified, so we

do not need to choose a weighting matrix for the GMM objective function. Following standard practice,

we impute β = .9 for the discount factor.

For the Euler equations, equations (7), and (8), we replace the expectation terms by the realized future

values of the variables and forecast errors, edmt and ermt. That is, the deforestation equation becomes

edmt (θ) =
d

dDmt
Cd
mt (Dmt; θ)

− β

 d

dAr,m,t+1

Km,t+1C
r
m,t+1

(
Km,t+1

Ar,m,t+1
; θ

)+
d

dDm,t+1
Cd
m,t+1

(
Dm,t+1; θ

) ,

(10)

where we have now made the cost functions’ dependence on the parameters explicit. Formally, the forecast
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error edmt (θ) is defined as the expectation term on the right-hand side of equation (8) minus its realization:

edmt (θ) =βEt

 d

dAr,m,t+1

Km,t+1C
r
m,t+1

(
Km,t+1 −Bm,t+1

Ar,m,t+1
; θ

)+
d

dDm,t+1
Cd
m,t+1

(
Dm,t+1; θ

)
− β

 d

dAr,m,t+1

Km,t+1C
r
m,t+1

(
Km,t+1 −Bm,t+1

Ar,m,t+1
; θ

)+
d

dDm,t+1
Cd
m,t+1

(
Dm,t+1; θ

) .

(11)

Equation (10) is then equation (8) with equation (11) substituted in.

Similarly, the cattle Euler equation becomes

ermt (θ) = Y × PB
mt − d

dBmt

[
(Kmt −Bmt)C

r
mt

(
Kmt−Bmt

Armt
; θ
)]

−β(1− δ)Y × PB
m,t+1 − gβ3Y × PB

m,t+3

−gβγ1
d

dBm,t+1

[(
Km,t+1 −Bm,t+1

)
Cr
m,t+1

(
Km,t+1−Bm,t+1

Ar,m,t+1
; θ
)]

−gβ2γ2
d

dBm,t+2

[(
Km,t+2 −Bm,t+2

)
Cr
m,t+2

(
Km,t+2−Bm,t+2

Ar,m,t+2
; θ
)]

,

(12)

where the forecast error ermt (θ) is defined as the right-hand side of equation (7) (which contains expec-

tations) minus its realization.

We introduce an error term, elv,mt (θ), into the land value equation, (9), which becomes

elv,mt (θ) ≡PL
mt −

d

dAmt

[
(Amt+1 −Amt) · Cd

mt (Amt+1 −Amt; θ)
]

+
d

dArmt

[
(Kmt −Bmt) · Cc

mt

(
Kmt −Bmt

Armt
; θ

)]
.

(13)

In this case, the error term should be interpreted as measurement error in observed land prices.

We can estimate the model imposing that the error terms be mean zero—that is, that the first-order

conditions and land value equation hold on average. In other words, the moments we use for estimation

are

E


edmt (θ)

ermt (θ)

elv,mt (θ)

 = 0. (14)

For specifications with covariates Xmt in the deforestation cost function, we also include the moments

E
[
edmt (θ)Xmt

]
= 0.

Each of these moments has an economic interpretation. Equation (10) relates the marginal cost of

deforestation to holding costs. In a static model, deforestation should proceed until its marginal cost

corresponds to the marginal benefit of reducing holding costs. Equation (10) is the dynamic version

of such a condition, and deforestation moment, E
[
edmt (θ)

]
= 0, requires the parameter to make this
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optimality condition hold on average. Equation (12) relates the revenue from culling cattle to the value

of holding cattle for future sale. The moment condition E
[
ermt (θ)

]
= 0 requires that this optimality

condition hold on average. The land value moment, E
[
elv,mt (θ)

]
= 0, requires that, on average, the

observed land values correspond to the marginal value of pasture land in the model.

Our moments are appealing in that they do not rely on any particular exclusion restrictions or other

assumptions regarding the correlations of variables. We assume only that agents’ forecast errors average

out to zero. The specification of the model in itself arguably represents a strong assumption; however,

conditional on the model being correct, the assumption that forecast errors average out to zero represents

a mild assumption about agents’ expectations. If agents have rational expectations, then the agents’

expectations correspond to the actual expectations given the equilibrium data generating process, and

because forecast errors are mean zero by construction, our moments would be valid. While the assumption

of rational expectations is sufficient for the validity of our moments, it is not necessary. All we need is

that agent’s expectations of the realized variables in the above equations are correct on average, whether

or not they have fully rational expectations.

That said, care should be taken when constructing moments from Euler equations. Consider equation

(12), and observe that the equation includes observed realizations of variables dated after time t. It would

not be appropriate to use, for example, a moment like E
[
ermt (θ)P

B
m,t+1

]
= 0. The forecast error ermt (θ)

captures the difference between a time-t expectation (right-hand side of equation (7)) and its realization.

One of the things that that influences this forecast error is the realization of PB
m,t+1, so PB

m,t+1 is naturally

correlated with the forecast error.

5.1 Identification

We do not estimate a supply curve or supply elasticities directly. Instead, we recover the cost function

parameters that underlie supply decisions. We can then compute supply responses based on this cost

function. That is, we can solve and simulate the rancher’s problem within various economic environments.

Thus, supply responses are not primitives, but a function of the cost parameters and the economic

environment.

We now provide some intuition for how the cost function is identified. It is simplest to begin with

the Euler equation for cattle management, and consider the simplified version of the model where cattle

mature in one period (what we say here applies equally well to the full model, but the notation is far

more cumbersome):

PB
m,tY = β (1− δ + g)Et

[
PB
m,t+1Y

]
+

d

dBm,t

(Km,t −Bm,t)C
r
m

(
Km,t −Bm,t

Am,t
; θ

) . (15)

This equation states that a rancher should be indifferent between selling a cow today or holding it for one

more period, incurring extra holding costs and selling it and its offspring next period. After substituting

in the expectational error term and rearranging, we have The right hand side of the equation corresponds
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to the net present value of holding a cow for one more. In general, as long as the discount rate isn’t too

large, holding the cow will lead to more discounted revenues. That is, it is natural to expect that

β (1− δ + g)Et

[
PB
m,t+1Y

]
> PB

m,tY.

The extra holding costs must then be sufficiently large to cancel out the extra revenue associated with

holding the cow, keeping the rancher indifferent between selling now or later along the optimal path.

Recall that we introduce a forecast error term capturing the difference between expected and realized

values in the Euler equation, which in the context of this simplified model becomes

ermt = β (1− δ + g)Y

(
Et

[
PB
m,t+1

]
− PB

m,t+1

)
,

and equation (15) becomes

ermt (θ) = PB
m,tY − β (1− δ + g)PB

m,t+1Y − d

dBm,t

(Km,t −Bm,t)C
r
m

(
Km,t −Bm,t

Am,t
; θ

) . (16)

Therefore, the moment ermt (θ) = 0 calls for finding holding cost parameters that make the marginal

holding costs equal to the extra revenue associated with holding the for one more period. We can think of

this as identifying the congestion cost parameter, θr1, although strictly speaking it provides information

about both holding cost parameters.

We can then turn to the deforestation Euler equation, equation (10). If deforestation rates aren’t

increasing quickly, then the terms

d

dDmt
Cd
mt (Dmt; θ)− β

d

dDm,t+1
Cd
m,t+1

(
Dm,t+1; θ

)
reflect a temptation to defer deforestation to the next period. Along the optimal path, this must be

balanced with the extra holding costs associated with delaying pasture expansion, captured by the term

β
d

dAr,m,t+1

Km,t+1C
r
m,t+1

(
Km,t+1

Ar,m,t+1
; θ

) ,

which is intuitively related to the holding costs identified by the cattle Euler equation above. Having

already identified the holding cost parameters, imposing the moment condition E
[
edmt (θ)

]
= 0 requires

that the level of deforestation costs be such the savings associated with delayed deforestation balance

with holdings costs.

Finally, the land value equation tells us about the expected discounted stream of payoffs to the rancher.

This provides information about the fixed cost parameter, θr0, which controls the average cost of holding

cattle, and therefore the average profitability of pasture land.
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Table 3: Cost Estimates: Simplified Cattle Dynamics

(1) (2) (3) (4)

θr0 119.2 206.014 163.066 219.858
(−83.51,352.77) (2.1889,370.36) (2.5142,362.8) (36.41,371.39)

θr1 1742.79 1450.07 1594.88 1403.39
(1186.4,2331.8) (1119.4,1969.6) (1089.8,2117.4) (1104.3,1841.8)

θd 65464.3 35312.4 58659.9 34175.6
(47606.,98678.) (22773.,56755.) (43587.,86015.) (22233.,54371.)

Post-2006 766.743 720.299
(419.79,972.22) (327.92,943.23)

Blacklist 1079.56 470.119
(215.51,1831.5) (31.549,1168.4)

Mean holding cost 377.637 421.044 399.57 427.965
(227.27,543.74) (281.94,541.01) (275.02,547.5) (298.15,545.14)

Mean DF cost 643.109 934.34 614.551 904.263
(467.67,969.4) (770.92,1087.6) (464.52,869.93) (743.19,1061.7)

Mean marginal DF cost 1286.22 1281.24 1190.82 1240.
(935.35,1938.8) (1096.1,1527.5) (892.37,1714.9) (1079.,1462.1)

Observations 12773 12773 12773 12773

Notes: The table presents cost parameter estimates and derived statistics for specifications with simplified cattle
dynamics (i.e., no calf or yearling stocks). Mean cost statistics average over municipalities and years in our sample.
The Post-2006 and Blacklist dummy variables are included in the deforestation cost function. Standard errors,
shown in parentheses, are clustered by year and calculated using the block bootstrap procedure. Observations are
by municipality-year.

5.2 Parameter Estimates

Tables 3 and 4 present the estimated cost parameters for specifications with simplified and full cattle

dynamics, respectively. Standard errors, shown in parentheses in the table, are clustered by year to

capture spatial dependence in the data, and calculated using the block bootstrap procedure.

The implied average cost of deforestation is on the order of $600 per hectare in most specifications

(although the cost of the marginal hectare is somewhat larger). For comparison, Almeida and Uhl (1995)

report slash and burn clearing costs of $291 per hectare in 1993; which is a comparable cost to the average

deforestation cost estimated in our model after adjusting for inflation.
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Table 4: Cost Estimates: Full Model

(1) (2) (3) (4)

θr0 -220.531 -121.598 -171.062 -106.332
(−433.39,−30.268) (−298.1,2.5445) (−322.73,−11.828) (−271.15,10.992)

θr1 2101.84 1741.42 1921.62 1685.81
(1434.8,2812.8) (1346.2,2347.1) (1316.1,2550.) (1327.7,2207.3)

θd 65465.7 34681.6 58591.1 33574.
(47607.,98680.) (22332.,55261.) (43503.,85904.) (21883.,52911.)

Post-2006 782.816 736.225
(449.51,985.26) (357.55,956.2)

Blacklist 1090.7 466.416
(222.86,1834.7) (36.45,1131.)

Mean holding cost 133.281 236.964 185.125 252.963
(−112.13,369.69) (−4.1984,465.4) (−14.186,376.12) (55.32,465.65)

Mean DF cost 643.123 940.458 614.27 910.423
(467.69,969.42) (783.02,1093.2) (464.4,869.23) (749.79,1070.4)

Mean marginal DF cost 1286.25 1281.16 1189.86 1240.25
(935.37,1938.8) (1093.4,1517.5) (891.67,1713.1) (1080.7,1445.1)

Observations 12773 12773 12773 12773

Notes: The table presents cost parameter estimates and derived statistics for specifications with the full cattle
dynamic model (i.e., with time to build). Mean cost statistics average over municipalities and years in our sample.
The Post-2006 and Blacklist dummy variables are included in the deforestation cost function. Standard errors,
shown in parentheses, are clustered by year and calculated using the block bootstrap procedure. Observations are
by municipality-year.
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6 Short- and Long-Run Price Responses

In this section, we solve and simulate the rancher’s problem to show that simulated data from the model

can replicate empirical patterns in the data. In the simulated model, despite the fact that the long-run

elasticity of deforestation is large, the correlation between contemporaneous deforestation and beef prices

can be effectively zero, or even negative.

We solve the rancher’s problem given an exogenous process for beef prices. When we compute policy

simulations in section 7, prices will be endogenous, but here, we are only interested in how a rancher

responds to price shocks in the short and long run.

For these simulations, we assume that beef prices follow a simple AR(1) process that matches the

degree of persistence observed in the data:

PB
t = (1− 0.72)µp + 0.72PB

t−1 + εB,t,

where εB,t is i.i.d. normal with variance 0.50. The degree of autocorrelation and variance imputed here

match those observed in Brazilian spot prices during our sample years.

We impute different values for the mean price µp, and solve and simulate the model separately for each

value of µp. Given a mean price, we can think about responses to PB
t (conditional on µp) as short-run

price responsiveness. We will interpret differences in behavior for different values of µp as long-run price

responsiveness.

We solve the model using a form of backward induction. Since deforestation is irreversible, we start

by solving the model assuming full deforestation, i.e., Amt = Ām. With full deforestation, the Amt state

variable can no longer change, and the agent’s problem simplifies to a cattle management problem.

We discretize the state space for Amt, and having solved the model for Amt = Ām, we then consider

the next lower value of Amt—say, Amt = Ām − ϵ, where the rancher can either remain at this level of

deforested land or deforest the last ϵ hectares of forest to arrive at the fully deforested state. Having

solved the value function for the Ām and Ām − ϵ states, we can then consider the Amt = Ām − 2ϵ state,

where the rancher can remain at the current level of deforested land, deforest ϵ more, or deforest 2ϵ to

reach the fully deforested state. We can proceed like this, backward inducting through the forest cover

variable (rather than backward inducting through time). In our implementation, ϵ corresponds to .05%

of the municipality’s land area.

In what follows, we illustrate the model solution for a post-2006 municipality that has grass produc-

tivity equal to the sample mean and is not on the blacklist.

Figure 5 illustrates some culling policy functions conditional on Amt = Ām–that is, behavior for the

cattle management problem when there is no deforestation left to be done. The left panel shows the

culling rate on the vertical axis and the current beef price on the horizontal axis when the cattle stock

density is 1.5 heads per hectare, while the right panel shows the same for a stock density of 3.3 heads

per hectare. The red line represents the culling rate when the long-run mean price is $1.85/kg; the blue
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dotted line corresponds to a mean price of $2.52/kg (similar to the mean in the data); and the purple

dotted line, a mean price of $3.48/kg.

Figure 5: Cattle Management Policy Functions
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Notes: The different lines correspond to policy functions for different mean prices. The horizontal axis maps out
the current price of beef. The culling rate is measured as the fraction of the adult cattle stock slaughtered in a
given year. The dashed gray line indicates the culling rate that would keep the herd size constant in the long run.

In both panels, the policy function is weakly increasing in PB. This means that when the rancher

observes a higher current price, she responds by slaughtering more cows to take advantage of the favorable

price shock. However, when the long-run price increases, from say $1.85/kg to $2.52/kg, the rancher’s

culling rate is lower. These dynamic patterns are also reflected in deforestation policy functions.

Figure 6: Deforestation Policy Functions
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the current price of beef. The deforestation rate is measured as the fraction of the municipality’s total area.
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Figure 6 illustrates deforestation policy functions, conditional on two different stocking densities as

in Figure 5, but now we are considering the state where deforested land Amt is equal to 90% of the

municipality’s available land.

Conditional on the mean price, deforestation rates are decreasing with respect to the current price of

beef. This reflects the fact that culling rates are higher and herd growth is lower when current prices are

high. Thus, deforestation pressure is low when the current price is high.

However, comparing deforestation rates across mean prices, we have deforestation rates increasing

with respect to (mean) price. This reflects the fact that ranching is more profitable in the long run when

the mean price of beef is high, making the private returns to deforesting land higher.

These results point to a potential tension between the correlation we should expect to see within a

given data generating process and the comparative statics we derive by changing the mean of the data

generative process. Next, we confirm using simulations that the correlation we should expect to arise

between deforestation and beef prices is likely to be close to zero, and can even be negative.

We simulate data using the solution to the rancher’s problem described in this section. We simulate

the model 5000 times, generating a sample of 30 years of data each time (after a 20-year burn-in period).

For each sample, we regress deforestation rates on the log of the beef price. Figure 7 shows the histogram

of the estimated coefficients.

Figure 7: Simulated Regressions
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Notes: The figure presents the histogram of estimated coefficients on log price from simulated regressions of defor-
estation rates.

Figure 7 shows that the estimated elasticities are very small (inelastic) in magnitude, and more likely

to be negative than positive. This is consistent with what we saw in our descriptive regressions.
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The lesson from this exercise is that even though deforestation appears to be highly inelastic in the

data, its long-run elasticity can be large. Comparing deforestation rates in Figure 7 for µp = 3.48 and

µp = 2.52, we see that an approximately 33% increase in mean price is associated with an approximate

doubling of the deforestation rate–we could call this a long-run elasticity of about 3.

Typically, when we are concerned about long-run elasticities, we are interested in understanding what

will happen in a different policy environment. To that end, the next section performs policy simulations.

7 Policy Simulations

We embed the rancher’s problem within a broader equilibrium model to perform policy simulations. We

consider two kinds of policy interventions: beef taxes, and deforestation fines.

The model has five components: (1) the model of Brazilian ranchers introduced and estimated above,

(2) a global beef demand function, (3) a global crops demand function, (4) a global crops supply function,

and (5) a feedlot sector that converts crops into beef.

Our model of ranching consists of a municipality with average parameters that has been scaled up

to match aggregate Brazilian production in recent data. This representative municipality has 178M

hectares of available land. It is initially 33.5% deforested with a stocking density of .94 head/ha—values

corresponding to our sample means.

Global beef demand has the following form:

QD
B

(
PB
)
= 173.8− 31.104PB,

where the parameters were set to match recent consumption levels (when quantities are in millions of

metric tons and prices in 2012 USD per kilogram live weight) and have an elasticity of −.81. This

corresponds to a moderate estimate of the elasticity of demand for beef—see Bouyssou, Jensen and Yu

(2024) for a review.

Global crop demand has the following form:

QD
C

(
PC
)
= 795.6− 383.3PC ,

where the parameters were set to match recent consumption levels of maize (for food, not counting feed

and fuel) and have an elasticity of −.06, which corresponds to Roberts and Schlenker’s (2013) estimate

of the global demand elasticity for grain commodities.

Global crop supply has the following form:

QS
C

(
PC
)
= 1365.1(PC).1,

where the parameters were set to match recent production levels of maize and have an elasticity of .1,

which corresponds to Roberts and Schlenker’s (2013) estimate of the global supply elasticity for grain
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commodities.

The feedlot consists of a static, linear, and competitively available technology for converting crops

into beef. We assume that each kilogram of feedlot beef (live animal weight) requires 5.4 kilograms of

crop inputs and 1.53 units of numeraire good. In equilibrium, non-zero feedlot beef production requires

a zero profit condition with respect to the prices of crops and beef:

PB = 5.4PC + 1.53. (17)

We denote the amount of feedlot beef produced with QF
B. The amount of crops used for feedlot production

is 5.4QF
B

Market clearing in beef requires

QD
B

(
PB
t

)
= Bt +QF

B,t, (18)

where Bt is pasture beef production.

Market clearing in crops requires

QD
C

(
PC
t

)
+ 5.4QF

B,t = QS
C

(
PC
t

)
(19)

Equations (17), (18), and (19) define a static equilibrium conditional on the pasture beef production

level Bt In each period, the aggregate state variables are the area of pasture land and the associated

cattle herd, (A,K). Aggregate behavior will entail a culling rate B∗
t (A,K) and associated level of beef

production. We can then write P ∗
t (A,K) to denote the equilibrium beef price, which is given by the

solution to equations 17-19 given Bt = B∗
t (A,K).

The planner decides on pasture beef production rates Bt and deforestation rates Dt to maximize

expected discounted private surplus. That is, the objective function for the planner’s problem is consumer

surplus (from both beef and crops) plus rancher profits. The social cost of emissions are not included

at this stage, for we are solving the planner’s problem only for the purpose of solving for competitive

equilibrium.

We assume that time T ∗ is the last period in which deforestation is permitted, with T ∗ = 10 in our

baseline specification. The model continues thereafter, but with a fixed pasture area; ranchers only make

cattle management decisions from period T ∗ + 1 onward.

Let Wmt (A,K) represent the planner’s time specific value function. The post-T ∗ equilibrium will

be stationary and we can drop the time subscripts and simply write Wm∗ (A,K) = Wmt (A,K) for all

t ≥ T ∗ + 1. We solve for Wm∗ (A,K) as the fixed point of the Bellman equation

Wm∗ (A,K) = max
B

πm (B, 0,K,A, P ) + βWm∗
(
A,K ′ (B,K) , P ′) .

Having solved the value function for the post-deforestation world, we can use backward induction to define
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and solve the value function in previous periods. That is,

WmT ∗ (A,K,P ) = max
B,D

πm (B,D,K,A, P ) + βWm∗
(
A+D,K ′ (B,K) , P ′) ,

and

Wmt (A,K,P ) = max
B,D

πm (B,D,K,A, P ) + βWm,t+1

(
A+D,K ′ (B,K) , P ′)

for t < T ∗.

We can appeal to the Second Fundamental Welfare Theorem to establish that the solution to the

planner’s problem corresponds to a competitive equilibrium, supposing that each rancher owns an in-

finitesimally small amount of land. We can also verify this directly. The solution to the planner’s problem

implies an equilibrium path of prices that are exogenous from an individual rancher’s perspective. We

can then solve the rancher’s optimal problem given this path of prices, and confirm that the individual

rancher’s cattle management and deforestation decisions correspond to the planner’s aggregate decisions.

Figure 8 shows that Pigouvian deforestation taxes equal would completely halt deforestation, since

that tax would far exceed the NPV that ranching generates per hectare. As noted above, the social value

of carbon released by a hectare of deforestation in Amazonia is much higher than the values of pasture

land observed in the data.

While deforestation taxes have been viewed by many as politically infeasible due to the costs on voters,

Figure 8 suggests that ranchers may actually benefit from these policies: restricting supply leads to higher

beef prices, which leads to higher profits per hectare. This means incumbent ranchers (particularly those

who are not actively deforesting) stand to gain from increased enforcement of anti-deforestation measures.

We note that policies restricting agricultural production to increase prices for farmers are common around

the world.

While deforestation taxes would increase profits per acre, pasture land would decrease, and Figure

8 shows that total profits for Brazilian ranchers would decrease slightly with deforestation taxes. The

estimated loss of ranching income to Brazil would be $1331.6 M/yr. Given that forest preservation

programs such as REDD+ already receive hundreds of millions of dollars in funding per year, it may be

feasible for other countries to compensate Brazil for this loss of income.

7.1 Implications for ILUC and Leakage

Going beyond the explicit policy simulations above, we comment here on the broader conceptual impli-

cations of high elasticities for indirect land use change and leakage.

While our dynamic model does not have a single long-run elasticity of deforestation—long-run elatici-

ties can be defined in many different ways—our results clearly indicate that deforestation is highly elastic

in the long run. We can see this both in the policy functions and simulations results. As discussed above,

we can see a long-run elasticity of approximately 3 in the policy functions displayed in Figure 7. Turning

to Figure 8, we can see that the beef tax lowers the price received by ranchers by about 18% in the steady
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Figure 8: Counterfactual Simulations
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state; meanwhile, during the period when deforestation is allowed, deforestation rates are about 77%

lower than in the baseline. This implies a long-run elasticity of about 4.3. Either way, we have a large

long-run elasticity of deforestation, and this has important implications for policy concerns like indirect

land use change and leakage.

Indirect land use change refers to the phenomenon that, when a policy causes the prices of agricultural

commodities to rise, it can induce new agricultural production around the world, potentially far away

from the places where the policy is implemented. For a given price change, the amount of indirect land use

change in a given location is proportional to the price elasticity of land use in that location. Therefore, our

result that deforestation is highly elastic in the long run indicates that policies that increase agricultural

commodity prices (and particularly the price of beef) are likely to have large indirect land use change

impacts in the Brazilian Amazon.

Highly price elastic deforestation also has important implications for leakage in the context of forest

protection programs, such as the UN’s REDD+ program. Consider a market clearing equation,

QD (P ) = λQS (P ) ,

where QD (P ) is demand for some commodity, QS (P ) is supply, with 1 − λ being the fraction of land

protected. To keep this illustration simple, we ignore yield heterogeneity and targeted land protection, so

1− λ can represent both the reduction in production and the proportion of land protected. The implicit

function theorem implies
dP ∗

dλ
=

−QS (P )
dQS(P )

dP − dQD(P )
dP

.

By the chain rule,

dQS (P ∗)

d∆
=

dQS (P ∗)

dP

dP ∗

d∆
= QS (P )

dQS(P )
dP

dQS(P )
dP − dQD(P )

dP

.

Putting these expressions together,

d
(
λQS (P ∗)

)
dλ

= QS

(
P ∗)1−

dQS(P )
dP

dQS(P )
dP − dQD(P )

dP

 = QS

(
P ∗)(1− ES

ES − ED

)
,

where ES
ES−ED is the rate of leakage.

With supply highly elastic (relative to demand), leakage can be close to 100%. While elasticities are

not quite so extreme in the context of deforestation, it does seem to be the case that supply elasticities

are substantially above demand elasticities. We had back-of-the-envelope estimates of the elasticity of

deforestation of 3 and 4.3 above. Meanwhile, our borrowed elasticity of beef demand from the literature

was −.81. Using these numbers, we have a back-of-the-envelope leakage estimates of 79% and 84%,

implying that a large majority of forest protection is undermined by equilibrium effects.
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8 Conclusion

This paper models dynamic deforestation and cattle management jointly. In the short run, deforestation

may appear highly inelastic or even negatively correlated with prices, which helps explain previous empir-

ical findings in reduced-form regressions. However, our model shows that, in the long run, deforestation

becomes highly elastic—a result not captured in existing reduced-form analyses.

These findings have profound policy implications. A simplistic analysis, extrapolating from the

reduced-form estimates, might suggest that deforestation is largely unresponsive to economic incentives,

leading to the conclusion that policies affecting beef prices would have minimal impact on deforestation,

and that forest protection policies would suffer from minimal leakage. Our results indicate otherwise.
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Online Appendix

A Model Details

A.1 Deriving the Euler Equations

A.1.1 Cattle Euler Equation

The first-order condition for the choice of culling B is

PB
mtY − d

dBmt

[
(Kmt −Bmt)C

c
mt

(
Kmt −Bmt

Armt

)]
+ βEt

[
d

dBmt
V
(
Km, t+ 1, Am,t+1

)]
= 0,

which implies

Y × PB
mt −

d

dBmt

[
(Kmt −Bmt)C

c
mt

(
Kmt −Bmt

Armt

)]

+βEt

[
−(1− δ)

d

dK3,m,t+1
V
(
K1,m,t+1,K2,m,t+1,K3,m,t+1, Am,t+1

)
− g

d

dK1,m,t+1
V
(
K1,m,t+1,K2,m,t+1,K3,m,t+1, Ar,m,t+1

)]
= 0, (A1)

as each cow culled decreases next period’s breeding stock by (1− δ) units and decreases the number of

calves next period by g units.

Next, we consider the derivatives of the value function with respect to the cattle stock state variables,

using the Envelope Theorem. Recall that Kmt = γ1K1mt + γ2K2mt +K3mt. First, consider the derivative

with respect to K3mt. To reduce clutter, we write Vmt without its arguments:

d
dK3mt

Vmt = d
dK3mt

[
− (Kmt −Bmt)C

c
mt

(
Kmt−Bmt

Armt

)]
+ βEt

[
d
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]
= d
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c
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(
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(1− δ) d
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]
= Y × PB

mt,

(A2)

where the second equality uses the fact that

d

dKmt

[
− (Kmt −B)Cc

mt

(
Kmt −B

Armt

)]
=

d

dB

[
(Kmt −B)Cc

mt

(
Kmt −B

Armt

)]
;

and the last line follows from (A1).
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Next, we consider the value function’s derivative with respect to the yearling stock K2mt:

d
dK2mt
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(A3)

Now, we take the value function’s derivative with respect to the calf stock K1mt:
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m,t+2

]]
(A4)

where we have substituted for d
dK2,m,t+1

Vt+1.

We then substitute for the value functions in A1 and get

Y × PB
mt = d

dBmt

[
(Kmt −Bmt)C

c
mt

(
Kmt−Bmt

Armt

)]
+βEt

[
(1− δ) d

dK3,m,t+1
Vm,t+1

]
+ βEt

[
g d
dK1,m,t+1

Vm,t+1

]
= d

dBmt

[
(Kmt −Bmt)C

c
mt

(
Kmt−Bmt

Armt

)]
+β(1− δ)Et

[
Y × PB

m,t+1

]
+βgEt

[
γ1

d
dBm,t+1

[(
Km,t+1 −Bm,t+1

)
Cc
m,t+1

(
Km,t+1−Bm,t+1

Ar,m,t+1

)]]

+βgEt

βEt+1

[
γ2

d
dBm,t+2

[(
Km,t+2 −Bm,t+2

)
Cc
m,t+2

(
Km,t+2−Bm,t+2

Ar,m,t+2

)]]
+βgEt

[
βEt+1

[
βEt+2

[
Y × PB

m,t+3

]]]

(A5)

Rearranging:

Y × PB
mt = d

dBmt

[
(Kmt −Bmt)C

c
mt

(
Kmt−Bmt

Armt

)]
+β(1− δ)Et

[
Y × PB

m,t+1

]
+ gβ3Et

[
Y × PB

m,t+3

]
+gβEt

[
γ1

d
dBm,t+1

[(
Km,t+1 −Bm,t+1

)
Cc
m,t+1

(
Km,t+1−Bm,t+1

Ar,m,t+1

)]]

+gβ2Et

[
γ2

d
dBm,t+2

[(
Km,t+2 −Bm,t+2

)
Cc
m,t+2

(
Km,t+2−Bm,t+2

Ar,m,t+2

)]]
(A6)
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where nested expectations have been suppressed following the law of iterated expectations.

A.1.2 Deforestation Euler Equation

For the choice of deforestation D, we first recall that Dmt = Am,t+1 − Amt. The rancher’s first-order

condition with respect to Am,t+1 is:

d

dAm,t+1
Cd
m,t

(
Am,t+1 −Amt

)
+ βEt

[
d

dAm,t+1
Vm,t+1

]
= 0, (A7)

or equivalently,

d

dDmt
Cd
mt (Dmt) + βEt

[
d

dAm,t+1
Vm,t+1

]
= 0, (A8)

Next, let’s consider the derivative of the value function with respect to state variable Amt, using the

Envelope Theorem:

d

dAmt
Vmt =

d

dAmt
πm,t (Bmt,Kmt, Amt) +

d

dAmt
Cd
mt

(
Am,t+1 −Amt

)
. (A9)

We can express the derivative of agricultural payoffs in terms of the marginal returns to land in either

pasture or cropland:

d
dAmt

πm,t

(
Bmt,Km,t, Amt

)
= d

dAmt

(
πrmt (Bmt,Kmt, A

∗
rmt) + πcmt

(
A∗

cmt
Amt

, Amt

))
=

dA∗
rmt

dAmt

d
dA∗

rmt
πrmt (Bmt,Kmt, A

∗
rmt)

+
dA∗

cmt
dAmt

d
dA∗

cmt
πcmt

(
A∗

cmt
Amt

, Amt

)
= d

dAcmt
πcmt

(
Acmt
Amt

, Amt

)
.

= d
dArmt

πrmt (Bmt,Kmt, Armt)

(A10)

The second equality comes from the chain rule. The third and fourth equalities rely on the fact that

agricultural land must be divided between pasture and cropland, so that
dA∗

rmt
dAmt

+
dA∗

cmt
dAmt

= 1, and from the

fact that the marginal returns to land is equalized across crops and pasture (equation ??).

Next, we can combine equations A8, A9, and (A10):

d

dDmt
Cd
mt (Dmt) = βEt

[
− d

dAr,m,t+1
πrmt

(
Bm,t+1,Km,t+1, Ar,m,t+1

)
+

d

dDm,t+1
Cd
m,t+1

(
Dm,t+1

)]
,

(A11)

and since pasture land affects payoffs through the holding costs:

d

dDmt
Cd
mt (Dmt) = βEt

 d

dAr,m,t+1

Km,t+1C
r
m,t+1

(
Km,t+1

Ar,m,t+1

)+
d

dDm,t+1
Cd
m,t+1

(
Dm,t+1

) , (A12)
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Given the equivalence of the marginal returns to land across crops and pasture (equation ??), we can

also express this deforestation Euler equation in terms of cropland:

d

dDmt
Cd
mt (Dmt) = βEt

 d

dAc,m,t+1
πc,m,t+1

(
Ac,m,t+1

Am,t+1
, Am,t+1

)
+

d

dDm,t+1
Cd
m,t+1

(
Dm,t+1

) . (A13)

A.2 The Representative Rancher

Case 1: no deforestation

Suppose there are potentially many ranchers indexed by r, each of whom owns a pasture area ar. Let

A ≡∑r ar. We’re going to compare the situation with many ranchers in a competitive equilibrium to the

situation with a single rancher operating the full pasture area A. In either case, the path of beef prices

Pt is exogenous

The representative rancher maximizes

max
{Bt≥0}

E

∑
t

βtAπ
(
Bt,Kt/A, Pt

) .

subject to

Kt+1 = (1 + g − δ) (Kt −Bt) .

Rearranging,

Bt = Kt −
Kt+1

1 + g − δ
.

Then we can rewrite the problem

max
{Kt}

∑
t

βtAπ

(
Kt −

Kt+1

1 + g − δ
,Kt/A, Pt

)
.

The constraint Bt ≥ 0 in the original problem will translate to the constraint

Kt −
Kt+1

1 + g − δ
≥ 0

in the modified problem.

First-order condition, assuming interior solution for all t:

∂Kt : E

dπ
(
Kt−1− Kt

1+g−δ
,Kt−1/A,Pt−1

)
dKt

+ β
dπ

(
Kt−

Kt+1
1+g−δ

,Kt/A,Pt

)
dKt

 = 0 ,
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which we can rewrite

∂Kt : E

[
dπ(Bt−1,Kt−1/A,Pt−1)

dBt−1
+ β

dπ(Bt,Kt/A,Pt)
dKt

]
= 0.

Notice that these first order conditions depend only on Kt/A for various t—cattle densities. Therefore,

if {kt}, where kt = Kt/At satisfy the first order conditions for the representative rancher, then the same

densities of {kt} solve the first order conditions for a rancher of any size. Thus, the representative rancher

will choose the same cattle density that smaller ranchers would.

Case 2: with deforestation

Now we add the decision of how much to deforest, Dt. This cost function is thought to be concex, i.e.,

C (D) = γDD
2. Deforestation increases the pasture area: At+1 − At = Dt The representative rancher’s

problem is now

max
{Kt,At}

∑
t

βt

[
Atπ

(
Kt −

Kt+1

1 + g − δ
,Kt/At, Pt

)
− C (At+1 −At)

]
.

With the representative rancher, we now have these first-order conditions:

∂Kt : E

[
At−1

dπ(Bt−1,Kt−1/At−1,Pt−1)
dBt−1

+ βAt
dπ(Bt,Kt/At,Pt)

dKt

]
= 0

∂At : E

[
−C ′ (At −At−1) + β

(
At

dπ(Bt,Kt/At,Pt)
dAt

+ π
(
Bt,Kt/At, Pt

)
+ C ′ (At+1 −At)

)]
= 0.

For the competitive market, we imagine that there is a continuum of forest landowner engaging in

deforestation, each of whom owns some infinitesimal amount of land. Landowner i’s decision variable

is Di. For each of them, the marginal cost of deforestation is given by 2γDD, where D =
∫
Didi. The

idea here is that the convexity of deforestation cost does not come from convexity in a firm-specific

deforestation cost function, but from some underlying scarcity—e.g., we can suppose that labor is the

main input into deforestation, and the local labor supply curve is upward sloping. Then, the wages that

clear the market are increasing with respect to the level of deforestation.

Landowners sell land to ranchers in a frictionless land market. Let PA
t be the price of pasture land

per hectare in time t.

A rancher’s objective function is

max
{Kt,at}

∑
t

βtatπ

(
Kt −

Kt+1

1 + g − δ
,Kt/at, Pt

)
− PA

t (at − at−1) .
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A rancher’s first order conditions will be

∂Kt : E

[
at−1

dπ(Bt−1,Kt−1/at−1,Pt−1)
dBt−1

+ βat
dπ(Bt,Kt/at,Pt)

dKt

]
= 0

∂at : E

[(
at

dπ(Bt,Kt/at,Pt)
dat

+ π
(
Bt,Kt/at, Pt

)
− PA

t

)
+ βPA

t+1

]
= 0.

A forest landowner’s objective function, assuming they always sell the land they deforest immediately

max
{AF

it}
∑
t

βt

[
PA
t

(
AF

it−1 −AF
it

)
−
(
AF

it−1 −AF
it

)
C ′ (Dt)

]
,

noting that the aggregate deforestation rate Dt is exogenous from the perspective of an infinitesimally

small landowner.

∂AF
t : E

[
−PA

t + C ′ (Dt) + β
(
PA
t+1 − C ′ (Dt+1)

)]
= 0.

Substituting the deforester’s Euler equation into the rancher’s at Euler equation,

∂at : E

[(
at

dπ(Bt,Kt/at,Pt)
dat

+ π
(
Bt,Kt/at, Pt

)
− C ′ (Dt)

)
+ βC ′ (Dt+1)

]
= 0.

Now, if we consider a solution to the represenative rancher’s problem and let kt = Kt/At, that same

cattle density and at/at−1 = At/At−1 will solve a small rancher’s decision problem.

B Data Appendix

B.1 Transportation Costs

Our strategy for measuring transportation costs to the port is similar to that in Souza-Rodrigues (2019).

We begin by defining the locations of thirteen ports, one location for each Brazilian state that has

access to the ocean. Locations were selected by hand using the Brazilian government’s shapefiles describing

port locations.8 The list of points is

• Santos, São Paulo: latitude -23.961◦, longitude -46.294◦

• Paranaguá, Paraná: latitude -25.502◦, longitude -48.506◦

• Rio Grande, Rio Grande do Sul: latitude -32.043◦, longitude -52.076◦

• Vitória, Esṕırito Santo: latitude -20.277◦, longitude -40.236◦

• São Francisco do Sul, Santa Catarina: latitude -26.239◦, longitude -48.635◦

• São Lúıs, Maranhão: latitude -2.569◦, longitude -44.370◦

8Obtained from https://www.gov.br/transportes/pt-br/assuntos/dados-de-transportes/bit/bit-mapas.

40



• Salvador, Bahia: latitude -12.786◦, longitude -38.477◦

• Recife, Pernambuco: latitude -8.054◦, longitude -34.868◦

• Maceió, Alagoas: latitude -9.683◦, longitude -35.726◦

• Pecém, Ceará: latitude -3.527◦, longitude -38.796◦

• Rio de Janeiro, Rio de Janeiro: latitude -22.892◦, longitude -43.195◦

• Barcarena, Pará: latitude -1.492◦, longitude -48.591◦

• Aracaju, Sergipe: latitude -10.906◦, longitude -37.048◦

The next step is to construct a transportation network. Because beef is primarily transported by

road, we ignore railways and rivers for this exercise, but we distinguish between paved and unpaved

roads. Brazil’s National Bureau of Infrastructure provides shapefiles of federal highways and waterways

(https://www.gov.br/dnit/pt-br/assuntos/atlas-e-mapas/pnv-e-snv). Brazil’s Ministry of

Transport provides shapefiles for the federal road network, railway network, waterways, and ports (https:

//www.gov.br/transportes/pt-br/assuntos/dados-de-transportes/bit/bit-mapas). Finally, a

shapefile of state highways was obtained from the World Bank (https://datacatalog.worldbank.org/

search/dataset/0038536).

We use proprietary data from ESALQ the per-kilometer cost of transporting beef by road. We directly

use freight costs from this dataset as our measure of the cost of transportation by paved road. We then

assume that unpaved roads have a 30% higher cost per kilometer than paved roads, following Souza-

Rodrigues (2019).

Then, for each municipality-port pair, we compute lowest possible cost of transporting beef from the

centroid of the municipality to the port, taking into account the modes of transportation along each

potential routes. To do this, we use a shortest path algorithm, noting that we search for the path that

minimizes transportation cost, not distance. Then, for each municipality, we choose the port with the

lowest transportation cost. The cost-minimizing path does not vary across years because each potential

route’s cost is linearly proportional to the per-kilometer cost of transporting beef.

The ESALQ data only covers 1997-2012, so we use this procedure to construct transportation costs

cmt for each municipality m and year t through 2012. For subsequent years, we project transportation

costs using diesel prices obtained from the Brazilian National Agency for Petroleum, Natural Gas and

Biofuels. Specifically, we use OLS to estimate the equation

cmt = α0m + αPPdiesel,t · distm + ϵmt,

where distm is the distance of the selected path for municipality m. For 2013 onward, we use fitted values

from this regression to impute transportation costs.
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B.2 Land Prices

We run some descriptive regressions with our land price data to illustrate that it has sensible correlations

with observable municipality-level characteristics. As anticipated, higher land productivity, proxied by

grass yields, is associated with increased land prices, while higher transportation costs to the port lower

land values. Moreover, larger cattle stocks and a greater share of cropland within a municipality indicate

higher land demand, which pushes prices upward.

Table B1: Land prices and covariates

(1) (2) (3) (4)
ln(Land price) ln(Land price) ln(Land price) ln(Land price)

ln(Grass yield) 5.19*** 4.70*** 4.20*** 4.20***
(0.54) (0.55) (0.52) (1.56)

ln(Transportation cost) -1.62*** -1.45*** -1.26*** -1.26***
(0.13) (0.13) (0.14) (0.43)

Herd density 0.33*** 0.32*** 0.32**
(0.046) (0.047) (0.14)

Cropland share 1.12*** 1.12**
(0.16) (0.49)

Observations 902 902 902 902
R-squared 0.614 0.632 0.645 0.645
Year FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Clustered by municipality ✓

Observations are by municipality and year. Robust standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Figure B1 Displays a histogram of land prices. Note that even the highest land prices are well below

$10,000 per hectare, which would be a conservative estimate of the value of carbon released by a hectare

of slash and burn deforestation in the Amazon.

B.3 Culling Rate Measurement

Our cattle stock data include only total headcounts, not headcounts by age. This limitation makes it

challenging to precisely measure culling rates, as we cannot directly observe the age distribution of the

herd. We let Kcount
mt = K1mt+K2mt+K3mt denote the observed cattle stock in year t. Note that this raw

count is different from the model’s aggregate Kmt, in which the calves and yearlings are weighted down

to produce an adult-equivalent measure.

Given the herd dynamics in equations (2)-(4), we can express the time-t+ 1 cattle stock as follows:

Kcount
m,t+1 = (1− δ + g) (K3mt −Bmt) +K1mt +K2mt.

Rearranging, we have

Bmt = K3mt −
Kcount

m,t+1 −K1mt −K2mt

1− δ + g
. (B14)
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Figure B1: Histogram of log land prices (in $ per hectare)
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Distribution of Pastureland Prices in Amazonia, 2012

If the initial cattle stocks by age were observed, equation (B17) would allow us to measure the culling

rate directly. In the absence of such data, we pursue two strategies to estimate the culling rate.

The first is that we assume the initial period is in a steady state. However, there is a continuum of

steady states with different ratios of young and old cattle. Observe that if we impose a steady state with

constant young and adult stocks—that is, Ky = K1mt = K2mt and and K3 = K3mt, but not necessarily

K3 = Ky—then the cattle dynamic equations imply

K3 = (1− δ)(K3 −B) +Ky (B15)

Ky = g(K3 −B). (B16)

Here, we have two equations and three unknowns (K3, Ky, and B), so we need to impose another

condition to pin down a unique steady state. Aggregate statistics from IBGE show a ratio of adult cows

to yearlings of about 2.8. We therefore impose K3/Ky = 2.8 in the initial period. That is, in the initial

period t = 1 we assume that K3mt = 2.8K1mt = 2.8K2mt, which implies K1mt = K2mt = Kcount
mt /4.8,

and K3mt = 2.8Kcount
mt /4.8. We can then use (B17) to measure the culling rate in the initial period, and

we can use the herd dynamic equations to infer the cattle stocks by age and culling rates for subsequent

periods. In the text, we refer to this measure, which imposes a demographic assumption on the initial

cattle stock, as our primary measure of the culling rate.

An alternative measure imposes the herd demographic assumptions within each period. Specifically,
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we impose K1mt = K2mt = Kcount
mt /4.8 and K3mt = 2.8Kcount

mt /4.8 within each time period, modifying

equation (B17) to obtain

Bmt = 2.8Kcount
m,t /4.8−

Kcount
m,t+1 − 2Kcount

m,t /4.8

1− δ + g
. (B17)

In other words, we do for every period what the primary measure does for the initial period. In the text,

we refer to this measure, which imposes a demographic assumption on each period’s cattle stock, as our

alternative measure of the culling rate.

B.3.1 Simplified Model

Note that in the simplified version of the model without time-to-build, it is straightforward to infer the

culling rate from observed changes in the cattle stock. In this version of the model, where there is only

one measure of the cattle stock, the herd dynamics are characterized by

Kt+1 = (1 + g − δ) (Kt −Bt) .

We can rearrange this equation to express the culling rate as

Bt = Kt −
Kt+1

1− δ + g
.

C Robustness

C.1 Dropping low deforestation rates

While the data do not include zero deforestation rates, this is likely due to measurement error. Some

municipalities have very low deforestation rates, and misclassification can produce spurious non-zero rates.

See Torchiana et al. (2025) for a discussion of measurement error in the context of measuring land use

change.

To assess robustness to potential zeros, we re-estimate the model after dropping very low deforestation

rates. Table (C2) demonstrates that our cost estimates are robust to dropping municipalities with very

low deforestation rates.

C.2 Dropping low deforestation rates

One concern is that Amazonia is an expansive region with variation in agricultural practices across it.

Table (C3) presents cost estimates for two sub-samples, in contrast to our main sample In column (2), we

drop municipalities that always have forest cover above 95%. These tend to be very large municipalities

in the Amazonas and Pará states. In column (3), we drop all municipalities within the states of Mato

Grosso and Rondônia, which have relatively high stocking densities and are known to have a non-trivial
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Table C2: Robustness to Zeros: Simplified Cattle Dynamics

(1) (2) (3)

θr0 219.858 211.237 194.157
(36.41,371.39) (23.78,363.73) (8.5227,348.66)

θr1 1403.39 1399.97 1380.36
(1104.3,1841.8) (1097.7,1845.7) (1077.3,1814.4)

θd 34175.6 33820.3 31235.2
(22233.,54371.) (21871.,49778.) (20534.,46019.)

Post-2006 720.299 743.919 772.51
(327.92,943.23) (365.01,978.71) (343.88,1044.4)

Blacklist 470.119 447.35 403.305
(31.549,1168.4) (8.1036,1059.8) (−24.071,1052.6)

Mean holding cost 427.965 424.559 416.721
(298.15,545.14) (291.84,542.89) (280.17,536.46)

Mean DF cost 904.263 933.564 969.364
(743.19,1061.7) (759.56,1102.2) (780.06,1167.3)

Mean marginal DF cost 1240. 1278.34 1332.57
(1079.,1462.1) (1110.7,1493.6) (1154.2,1557.6)

Observations 12773 12274 10518

Notes: The table presents cost parameter estimates and derived statistics for specifications with simplified cattle
dynamics (i.e., no calf or yearling stocks). Column (1) uses the full sample. Column (2) drops observations involving
deforestation rates below .05%. Column (3) drops observations involving deforestation rates below .2%. Mean cost
statistics average over municipalities and years in our sample. The Post-2006 and Blacklist dummy variables are
included in the deforestation cost function. Standard errors, shown in parentheses, are clustered by year and
calculated using the block bootstrap procedure. Observations are by municipality-year.
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Table C3: Robustness in Subsamples: Simplified Cattle Dynamics

(1) (2) (3)

θr0 219.858 208.144 363.641
(36.41,371.39) (18.845,360.33) (−335.61,529.55)

θr1 1403.39 1427.88 1032.87
(1104.3,1841.8) (1120.2,1876.9) (606.74,3807.)

θd 34175.6 33351.4 30888.1
(22233.,54371.) (21630.,53042.) (15122.,2.23835× 105)

Post-2006 720.299 757.683 111.954
(327.92,943.23) (345.63,988.31) (−2277.,381.52)

Blacklist 470.119 474.503 255.3
(31.549,1168.4) (31.699,1198.1) (−155.8,1744.5)

Mean holding cost 427.965 422.804 501.516
(298.15,545.14) (290.6,540.88) (172.57,630.98)

Mean DF cost 904.263 939.992 410.104
(743.19,1061.7) (776.,1107.) (225.78,676.63)

Mean marginal DF cost 1240. 1281.86 729.108
(1079.,1462.1) (1116.5,1505.8) (564.29,2890.1)

Observations 12773 12178 9549

Notes: The table presents cost parameter estimates and derived statistics for specifications with simplified cattle
dynamics (i.e., no calf or yearling stocks). Column (1) uses the full sample. Column (2) drops observations from
municipalities that always have forest cover above 95%. Column (3) drops all municipalities from Mato Grosso
and Rondônia. Mean cost statistics average over municipalities and years in our sample. The Post-2006 and
Blacklist dummy variables are included in the deforestation cost function. Standard errors, shown in parentheses,
are clustered by year and calculated using the block bootstrap procedure. Observations are by municipality-year.

presence of feedlots recently.

Results are relatively robust, with the only notable difference is that holding costs appear to be slightly

higher when dropping Mato Grosso and Rondônia.
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