
Indirect Estimation of Yield-Price Elasticities

Paul T. Scott

July 15, 2013

Abstract

While it is most common to estimate yield-price responses directly by regressing yields on
prices, they may also be estimated indirectly by estimating fertilizer use elasticities and using
basic optimization theory to derive yield-price elasticities. Indirect estimation has a practical
advantage in terms of precision, for unpredictable weather variation makes yields a noisy measure
of farmer’s endogenous input use decisions. Indirect estimation suggests that yield-price elasticities
are unlikely to be larger than .04 for US corn, .11 for soybeans, and .13 for wheat. Because indirect
estimation delivers considerably smaller standard errors than direct estimation, these upper bounds
are much tighter than existing estimates.

1 Introduction

Although they play a crucial role in determining the environmental effects of changes in agricultural
markets, the magnitudes of intensive crop supply responses have weak and largely outdated empir-
ical foundations. While existing studies on yield-price elasticities have relied on regressing realized
yields directly on prices, such elasticities may instead be indirectly estimated by estimating input use
elasticities and then using economic theory to map to yield elasticities. Indirect estimation delivers
considerably more precisely estimated elasticities, and suggests that yield-price elasticities used in
influential policy reports are far too high.

Agricultural intensification (yield gains) is the magic bullet when it comes to the trade-off between
food production and environmental destruction. Extensive agricultural supply responses – i.e., expan-
sion of agricultural land into natural terrain – has tremendous costs in terms of ecological destruction
and greenhouse gas emissions. While intensification is not without environmental costs – e.g. syn-
thetic nitrogenous fertilizer have a substantial carbon footprint – the externalities associated with
intensification are generally much smaller than with extensification (Burney et al., 2010).
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The relative magnitudes of yield elasticities and acreage elasticities determine whether equilibrium
supply responses come primarily from intensification or acreage expansion. Thus, if yield elasticities
are larger, more of the supply response comes from intensification, and the environmental impacts of
increased food production are much smaller. Because they make such a big difference in the assessment
of environmental impacts, yield elasticities have become a point of contention in the evaluation of
biofuels policy. Berry (2011) questioned Tyner et al.’s (2010) use of a yield-price elasticity of .25,
arguing that there was no empirical evidence to support a yield elasticity so high. While Houck
and Gallagher (1976) found evidence to support yield-price elasticities for US corn as high as .25 and
significantly different from zero, subsequent work by Menz and Pardey (1983) and Choi and Helmberger
(1993) estimated yield-price elasticities for US corn which were insignificantly different from zero, and
with standard errors suggesting yield-price elasticities were unlikely to be larger than .3. More recently,
Berry and Schlenker (2011) argue that yield-price elasticities for major US crops are unlikely to be
larger than .1.

Theory provides a mapping between fertilizer use elasticities and expected yield elasticities. Conse-
quently, there are two potential approaches to estimating how expected yields respond to price changes:
direct estimation of how yields respond to prices, or indirect estimation by estimating the fertilizer
use elasticities and using the theoretical mapping.1 The only economic assumption required for the
mapping is that farmers choose input levels optimally. While the mapping does not hold strictly in
the aggregate when the set of cultivated fields may change, I show that indirect estimates of yield
elasticities with respect to output prices are positively biased (and therefore still useful for estimating
upper bounds) under plausible conditions.

From Houck and Gallagher (1976) to Berry and Schlenker (2011), studies on yield elasticities have re-
lied on a direct regression of realized yields onto prices. However, the indirect approach is more precise.
Optimization implies that expected yields and fertilizer use are directly proportional, and therefore di-
rect estimation of yield elasticities by regressing expected yields on prices would theoretically have the
same level of precision as indirect estimation. However, expected yields are not realistically observable;
in practice, direct estimation involves regressing realized yields on prices. As in all regressions, the
precision of the estimates depends in part on the variability of the error term, and unpredictable vari-
ation in weather leads to a relatively large variance in the error term in a direct yield-price regression.
Indirect estimation avoids this source of noise.

Precision is not the only reason for revisiting the topic of yield-price elasticities. With the exception
of Berry and Schlenker (2011), all of the studies of yield elasticities cited above are based on pre-1990

1There have been many studies on fertilizer demand (Griliches, 1959; Burrell, 1989; Denbaly and Vroomen, 1993;
Kaufmann and Snell, 1997; Williamson, 2011), but none of them take the step of relating input use elasticities to yield
elasticities. Choi and Helmberger (1993) follow an estimation strategy which is closer to the indirect approach I propose,
but their strategy relies on additionally estimating how yields depend on input levels, an estimation which suffers from
the same problem as the direct approach – randomness in yields introduced by weather makes it relatively less precise.
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data, typically including data beginning in the 1950’s or 60’s and extending through the 70’s. One
concern with estimates based on such old data is that technological change may have changed yield
elasticities. Another serious concern comes from the fact that United States agriculture was in a state
of transition during the 1960’s and early 70’s, and it was not until later in the 70’s that the use of
synthetic fertilizer was pervasive.2 Indeed, Menz and Pardey (1983) find evidence of a structural shift
in fertilizer usage patterns in the early 1970’s. Thus, older estimates may conflate the decision of how
much fertilizer to use with the decision of whether or not to adopt synthetic fertilizer, whereas only
the former decision is of practical relevance in the United States today.

It should be noted that much of the agronomic literature on fertilizer use and yields focuses on the
question of what the optimal level of fertilizer use is (e.g., Cerrato and Blackmer (1990); Johnson
and Raun (2003)). The uncertainties in the optimal level of fertilizer use calls into question a basic
assumption of the indirect estimation approach: that farmers know the production functions for their
fields and maximize profits accordingly. Despite this, the assumption of optimal input decisions has
been popular in the agricultural economics literature (e.g., Houck and Gallagher (1976); Choi and
Helmberger (1993)). While a more flexible model of farmer behavior which does not rely on optimiza-
tion and perfect information could be estimated in principle, estimating a flexible model along such
lines would probably require detailed micro data on farmer behavior, and the lack of such data has
been a constraint on the literature on literature on intensive crop supply responses to date.

My indirect estimates suggest that the yield elasticity with respect to output price is unlikely to be
larger than .04 for US corn, .11 for soybeans, and .13 wheat. In contrast, direct estimation cannot rule
out yield-output-price elasticities as high as .27 for corn, .46 for soybeans, and .19 for wheat. Point
estimates of yield-price elasticities are insignificantly different from zero in all cases, and so they may
be considerably closer to zero than the upper bounds suggest.

This paper focuses how crop yields respond to price changes through the channel of fertilizer use
decisions. Other yield-price responses – e.g., endogenous farm capital investment or technological
change – are beyond the scope of this paper.

Section 2 develops the theory behind the indirect estimation approach. Section 3 describes the data
and specific regressions that I estimate. Section 4 presents the results, and Section 5 concludes.

2According to the 2007 US Census of Agriculture, 266 million acres were treated with commercial fertilizers while
310 acres of cropland were harvested. In 1964, 151 million acres were fertilized, and 287 million acres were harvested.
According to the Economic Research Service, Nitrogen applied to corn increased from 58 pounds per acre in 1964 to
135-140 pounds per acre in recent years. By the late 1970’s, farmers were already applying over 130 pounds per acre.
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2 Theory

2.1 One input

A farmer growing corn chooses the fertilizer application rate L to maximize expected profits:

L∗ (PY , PL) = arg max
L
{PCY (L)− PLL} (1)

where PY is the expected price of the output, PL is the price of fertilizer, and Y (L) is the expected yield
at input level L. It should be emphasized that the farmer’s decision is made with respect to expected
yields and prices – fertilizer input decisions are typically made shortly before or after planting, before
unpredictable weather events during the growing season determine the realized yields.

The first-order condition for the optimal input choice L∗ is

dY (L∗)
dL

= PL

PY
. (2)

Thus, the optimal fertilizer application rate depends only on the ratio of input and output prices, and
we can write L∗ (Pr) where Pr = PL/PY .

Applying the chain rule, the price ratio ends up relating the yield derivative and the input use deriva-
tive:3

dY (L∗)
dPr

= dY (L∗)
dL

dL∗

dPr
= Pr

dL∗

dPr
. (3)

Applying the implicit function theorem to (2), we can see that the yield derivative and fertilizer
use derivative with respect to price are both proportional to the second derivative of the production
function:

dY (L∗)
dPr

= Pr

(
d2Y (L∗)

dL2

)−1

dL∗

dPr
=

(
d2Y (L∗)

dL2

)−1
.

Equation (3) can also be expressed in the form of elasticities:

EY,Pr = Pr
L∗

Y ∗
EL,Pr = PLL

∗

PY Y ∗
EL,Pr (4)

where EL,Pr
≡ Pr

L∗
dL∗

dPr
and EY,Pr

≡ Pr

Y ∗
dY ∗

dPr
.

3Technically, we must assume that Y (L) is concave, twice continuously differentiable and that L∗ (Pr) is at an interior
solution to guarantee that dL∗

dPr
is well defined.
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Thus, assuming that farmers’ decisions satisfy the first-order condition (2), one may calculate the yield
elasticity using the fertilizer-use elasticity, input expenditures, and expected revenues.

2.2 Aggregation

Given that all farmers face the same prices and all choose inputs optimally, the relationship between
yield and fertilizer use elasticities holds in the aggregate for a fixed group of active farms, even if those
farms have different production functions. Given that equations (3) and (3) hold for each farm, the
equations can be summed or averaged across farms and will still hold. Thus, the mapping from input
use to yield elasticities holds in the aggregate, with the input level L∗ referring to the average input
use across farms.

However, the potential pitfall with aggregation comes from the fact that the set of fields which plant
a given crop may change over time. For example, if the set of fields in corn is growing, then aggregate
changes in nitrogen fertilizer used for corn production will reflect not only changes in the optimal usage
levels for incumbent corn fields, but will also include fertilizer used on new corn fields. In other words,
equations (3) and (4) do not apply to newly planted fields because input use is not at an interior
solution, and therefore we cannot take the derivative of yields with respect to input use for such fields.

I argue that, fortunately, acreage responses are likely to introduce positive bias into indirect estimates
of aggregate of yield-price elasticities, meaning that indirect estimation still provides an effective tool
for estimating upper bounds on yield-price elasticities.

To make this argument formally, I must expand the notation. Suppose average yields are defined as
follows:

Ȳ (Pr) ≡
´ A∗(Pr)

0 Y ∗i (Pr) di
A∗ (Pr)

where i indexes fields, Ai is the acreage of field i, Y ∗i (Pr) are the optimal yields for field i with price
ratio Pr, and A∗ (Pr) is the equilibrium acreage with all fields such that i ≤ A∗ (Pr) being planted.

The aggregate yield elasticity is the elasticity of Ȳ (Pr) with respect to Pr. Combined, an average yield
elasticity and an acreage elasticity imply a supply elasticity. For many purposes, knowing the yield
elasticities for individual fields would be ideal, but for applications depending on supply elasticities,
knowing average yield elasticities is sufficient.

Define average fertilizer use similarly:

L̄ (Pr) ≡
´ A∗(Pr)

0 L∗i (Pr) di
A∗ (Pr)
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where L∗i (Pr) is the optimal level of per-acre fertilizer use in field i (conditional on the field’s being
planted).

We can now restate formally the difficulty with aggregation. While optimal input use implies

∀i : dY ∗i (Pr)
dPr

= Pr
L∗i (Pr)
dPr

,

the aggregate relationship does not hold:

dȲ (Pr)
dPr

6= Pr
L̄ (Pr)
dPr

because of the endogeneity of A∗ (Pr). However, I argue that the indirect aggregate estimate provides
a lower bound for the aggregate yield elasticity with respect to Pr (or an upper bound on the yield
elasticity with respect to the output price) given a plausible assumption.

Proposition 1. Assuming that marginal fields are no more profitable than the average cultivated field
in terms of expected revenues and fertilizer costs,

EȲ ,Pr
≥ Pr

L̄ (Pr)
Ȳ (Pr)

EL̄,Pr
.

Furthermore, since EȲ ,PY
= −EȲ ,Pr

,

EȲ ,PY
≤ −Pr

L̄ (Pr)
Ȳ (Pr)

EL̄,Pr
.

While it is theoretically possible for the revenues net of fertilizer costs for marginal fields to be higher
than fields which are already planted, it would be extremely surprising.

Proof. Using Leibniz’s rule, the aggregate yield elasticity can be written:

EȲ ,Pr
= Pr

Ȳ (Pr)

´ A∗(Pr)

0
dY ∗i (Pr)

dPr
di

A∗ (Pr) + EA∗,Pr

(
Y ∗A∗(Pr) (Pr)− Ȳ (Pr)

Ȳ (Pr)

)
. (5)

where Y ∗A∗(Pr) (Pr) denotes the yield of the marginal field. A similar equation holds for the aggregate
fertilizer elasticity:

EL̄,Pr
= Pr

L̄ (Pr)

´ A∗(Pr)

0
dLi(Pr)

dPr
di

A∗ (Pr) + EA∗,Pr

(
L∗A∗(Pr) (Pr)− L̄ (Pr)

L̄ (Pr)

)
. (6)

6



Multiplying equation (6) by Pr
L̄(Pr)
Ȳ (Pr) and rearranging,

Pr

Ȳ (Pr)

´ A∗(Pr)

0
dY ∗i (Pr)

dPr
di

A∗ (Pr) = Pr
L̄ (Pr)
Ȳ (Pr)

EL̄,Pr
− Pr

L̄ (Pr)
Ȳ (Pr)

EA∗,Pr

(
L∗A∗(Pr) (Pr)− L̄ (Pr)

L̄ (Pr)

)
. (7)

Finally, substituting equation (7) into equation (5),

EȲ ,Pr
= Pr

L̄ (Pr)
Ȳ (Pr)

EL̄,Pr
+ EA∗,Pr

(
Y ∗A∗(Pr) (Pr)− Ȳ (Pr)

Ȳ (Pr)
− Pr

(
L∗A∗(Pr) (Pr)− L̄ (Pr)

Ȳ (Pr)

))
.

Given that the acreage-price elasticity is negative, the bias of the indirect estimate Pr
L̄(Pr)
Ȳ (Pr)EL̄,Pr

has
the same sign as

PY

(
Y ∗A∗(Pr) (Pr)− Ȳ (Pr)

)
− PL

(
L∗A∗(Pr) (Pr)− L̄ (Pr)

)
,

which is precisely how the profits of a marginal field differ from the average cultivated field (accounting
only for the costs of the modeled input). Given the assumption, the difference in profits is negative, so
the bias in the indirect estimate of the yield elasticity with respect to Pr is also negative. Conversely,
−Pr

L̄(Pr)
Ȳ (Pr)EL̄,Pr

has positive bias as an estimate of the yield elasticity with respect to PY .

2.3 Multiple inputs

This theory extends to the case of multiple inputs. Let L = (L1, . . . , LJ) be a vector of J inputs,
and P = (P1/PY , . . . , PJ/PY ) be the vector of input-output price ratios. The first-order condition (2)
becomes

∇LY = P. (8)

The derivative condition (3) becomes

∇PY
∗ = (JPL∗)′P. (9)

where JPL∗ is the Jacobian of the optimal input choice vector L∗ with respect to P. The elasticity
condition (4) becomes

EY,P = E ′L,PX (P) (10)
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where X (P) =
(

P∗1 L1
PY Y ∗ , . . . ,

P∗J LJ

PY Y ∗

)
is a vector containing the ratio of expenditure to expected revenue

for each input, and EL,P is the matrix of input use-price elasticities; i.e.,

EL,P =


EL1,,P1/PY

. . . EL1,PJ /PY

...
. . .

...
ELJ ,P1/PY

· · · ELJ ,PJ /PY

 .

Finally, note that the yield elasticity with respect to the output price (holding input prices fixed), can
simply be obtained by summing the yield-input price elasticities for each input; i.e.,

∂ lnY ∗

∂ lnPY
=

J∑
j=1

∂ lnY ∗

∂ ln (Pj/PY )
d ln (Pj/PY )
d ln (PY ) = −

∑
j

∂ lnY ∗

∂ ln (Pj/PY ) (11)

since d ln(Pj/PY )
d ln(PY ) = −1 for all j (given that Pj is fixed).

Finally, the argument behind Proposition 1 extends naturally to the case of multiple inputs, so assuming
that the revenues net of total fertilizer costs for the average cultivated field is higher than for marginal
fields, we can conclude that

ĒY,PY
≤ −

∑
j

∑
j′

Xj′ (P) ĒLj ,Pj′/PY
.

3 Data and estimation

In this section, I describe the implementation of the indirect estimation approach for US corn, soybeans,
and wheat. Indirect estimation is based on estimates of input use elasticities for nitrogenous fertilizers
(abbreviated by N), phosphates (P ), and potash (K). For comparison, I also compute direct estimates
of yield-price elasticities.

3.1 Data

Data on fertilizer use and prices were obtained from the National Agricultural Statistics Service and
date back to 1990 (with some missing years). Fertilizer application data is available for each crop
in most of the states where the crop is prominent. State-level fertilizer price data is more sparse, so
national average prices paid are used when state-level prices are missing. The nitrogen price is derived
from the price of anhydrous ammonia; the phosphate price, from the price of superphosphate 44-46%;
the potash price, from the price of muriate of potash 60-62%.4

4Prices were converted to prices per nutrient short ton using chemical masses. For example, the price of nitrogen is
the price per short ton of ammonia times 17/14. Data on fertilizer use are in terms of nutrient tons, so converting prices
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Expected output prices are taken from futures prices obtained from the Chicago Board of Trade. The
expected prices for corn and soybeans are the average prices in January for contracts with delivery in
the November or December. For winter wheat, the expected price for year t is the average price in the
September of year t− 1 for contracts with delivery in December of year t.

While realized yields are used in the direct estimation of yield elasticities, indirect estimation calls for
a measure of expected yields (see equation (4)). Expected yields are computed using the county-level
yield forecasts computed by Scott (2013), and then aggregating to the state level by taking an average
weighted by harvested acreage.5

3.2 Empirical models

I begin by estimating yield-price elasticities directly, using the following regression:

ln (Yst) = α ln (Pt) + f (t) + α0s + εst (12)

where s indexed US states, t indexes years, Yst is the realized yield, Pt is the expected output price,
f (t) is a time trend, and α0s is a state fixed effect. I estimate equation (12) separately for corn,
soybeans, and winter wheat. The parameter α is the direct estimate of the yield-price elasticity. For
equation (12) and all regression equations with a time trend, I use a cubic spline with three knots for
f (t).

I also estimate the following more flexible direct model:

ln (Yst) =
∑

j

αj ln (Pt/Pj) + f (t) + α0s + εst (13)

where j indexes inputs,
∑

j αj is the yield-price elasticity (with respect to the output price, holding
input prices fixed), and the inputs included are nitrogen, phosphate, and potash.

Indirect estimation of yield-price elasticities begins with estimates of input use elasticities. I estimate
a restricted model of input use elasticities with cross-price elasticities set to zero,

ln (Ljst) = γj ln (Pt/Pj) + f (t) + α0js + εjst, (14)

where Ljst is the per-acre input use for nutrient j in state s during year t (by crop).

in this way is necessary to compute fertilizer expenditure appropriately.
5Note that these measures of expected yields could not be plugged into the direct estimation approach, for they are

constructed without using input and output prices – they only smooth over technological change and eliminate weather
variation.
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Table 1: Average share of expected revenue spent on nutrient inputs

Nitrogen Phosphate Potash
Corn 0.069 0.045 0.031
Soybeans 0.019 0.059 0.046
Winter wheat 0.083 0.068 0.034
US-wide averages, 1990-2010 based on NASS reports.

I also estimate an input use model with a full set of first-order input use elasticities:

ln (Ljst) =
∑

γjj′ ln (Pt/Pj′) + f (t) + α0js + εjst. (15)

I estimate equations (14) and (15) separately for each crop. As a robustness check, I also estimate
differenced versions of equations (14) and (15) which feature differenced input use and price ratios but
omit the time trend and fixed effects.

3.3 Indirect estimation example

Indirect estimation requires two inputs: estimates of the revenue shares of input expenditures, and
estimates of input use elasticities. Table 1 presents revenue shares of input expenditure for each crop
and nutrient, based on averages of such shares across states and years (weighted by harvested area).
Table 2 presents input elasticities (estimates of equation (15)) for corn with a full set of cross-price
input use elasticities (equation (15)). Together, these two tables present the numbers we need to
indirectly compute a yield-price elasticity.

As described in Section 2.3, the indirect estimate is computed by multiplying the matrix of input use
elasticities by the vector of revenue shares, −.0146 .1439 −.0899

−.0840 .2321 .0107
−.1247 .2749 .1503


 .0689

.0450

.0305

 =

 −.0086
.0288
−.0011

 ,

and then summing the resulting vector to find a yield-price elasticity of .019.

All indirect yield-price elasticities presented in Table 4 are estimated according to this indirect proce-
dure. Standard errors on the indirect estimates are derived by sampling input use elasticity matrices
from their estimated asymptotic distribution, and then constructing a simulated distribution of yield
elasticities by computing the indirect estimate for each matrix of sampled input use elasticities.
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Table 2: Input use elasticities for corn

ln (xN,corn) ln (xP,corn) ln (xK,corn)

ln (Pcorn/PN ) -0.0146 -0.0840 -0.125
(0.0329) (0.0480) (0.0330)

ln (Pcorn/PP ) 0.144 0.232 0.27
(0.0936) (0.104) (0.0791)

ln (Pcorn/PK) -0.0899 0.0107 0.150
(0.0899) (0.0917) (0.0686)

Observations 251 251 250
Standard errors with clustering by year in parentheses. Regressions include cubic spline with three knots and
state-level dummy variables.

3.4 On endogeneity

Although the literature on fertilizer demand has largely ignored simultaneity problems, it is worth
considering whether unobservable factors which shift the fertilizer demand curve could create bias
when estimating equation (14) or (15).

One might argue that shifts in fertilizer prices are likely to be driven almost entirely by exogenous
factors shifting the supply of fertilizer. For example, the natural gas price is plausibly the main
determinant of the price of ammonia (and other nitrogenous fertilizers, which are all derived from
ammonia), and ammonia production accounts for less than 1.5% of natural gas use in the United States.
Furthermore, there are many firms in the fertilizer manufacturing industry producing homogeneous
chemical products, so demand shifts are not likely to affect markups.6

Furthermore, fertilizer application rates in the US have been relatively stable in the US since the late
1970’s,7 and changes in crop acreage are generally very gradual, so it’s not clear that there are any
factors which would shift the demand curve for fertilizer substantially in the short run, and fertilizer
production is arguably constant returns to scale in the long run, so gradual changes in the demand
curve might not affect prices.

6According to 2011 USGS Minerals Yearbook publications, there were 13 companies actively producing ammonia
(activated nitrogen) in the US in 2011, six companies mining phosphate rock, and three companies producing potash.
Producers of fertilizer nutrients also face substantial import compentition. In recent years, almost 40% of activated
nitrogen consumed in the US has been imported, about 10% of phosphate rock, and over 80% of potash. See USGS
Minerals Yearbooks for details.

7See, for example, USDA "Fertilizer Use and Price" reports, http://www.ers.usda.gov/data-products/fertilizer-use-
and-price.aspx.
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Table 3: Direct yield elasticity estimates

ln (Ycorn) ln (Ysoybeans) ln (Ywheat)

ln (Pcrop) 0.245 0.203 -0.0348
(0.140) (0.122) (0.105)

ln (Pcrop/PN ) -0.0395 -0.0719 -0.0733
(0.0762) (0.0809) (0.0767)

ln (Pcrop/PP ) -0.184 0.0873 0.0803
(0.147) (0.177) (0.149)

ln (Pcrop/PK) 0.181 0.110 -0.0523
(0.0847) (0.108) (0.124)

Observations 495 495 410 410 460 460

Yield Elasticity 0.245 -0.0421 0.203 0.125 -0.0348 -0.0453
95% CI (-0.0506,0.540) (-0.353,0.269) (-0.0543,0.461) (-0.210,0.460) (-0.256,0.186) (-0.357,0.267)

Pcrop refers to Pcorn, Psoybeans, or Pwheat, corresponding to the depedent variable. Standard errors with
clustering by year in parentheses. Regressions include cubic spline with three knots and state-level dummy
variables.

On the supply side, there are undoubtedly large sources of variation in costs, at least for the production
of nitrogenous fertilizers. The price of natural gas is highly volatile, and natural gas accounts for on
the order of 90% of ammonia production costs Yara (2012), and ammonia is the main input for all
nitrogenous fertilizers.

Thus, I argue that endogeneity is probably not a large concern when estimating fertilizer use elasticities.

4 Results

Table 3 presents direct estimates of yield-price elasticities for all three crops. All 95% confidence
intervals for the yield-price elasticity contain zero, and the narrowest confidence interval has an upper
bound of .27 for corn, .46 for soybeans, and .19 for wheat.

In contrast, indirect estimates presented in Table 4 are considerably more precise. The largest upper
bounds for 95% confidence intervals are just over .03 for corn, .1 for soybeans, and .13 for wheat. In
all cases, indirect estimation provides unambiguous gains in precision.

Furthermore, my estimates pin down the magnitude of yield-price elasticities considerably more pre-
cisely than other estimates in the literature. After Houck and Gallagher (1976), the trend has been
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Table 4: Indirect yield-price elasticity estimates

Regression Cross-price
specification elasticities Corn Soy Wheat

levels no 0.021 0.059 0.008
(0.011,0.031) (0.017,0.101) (-0.039,0.056)

levels yes 0.019 0.036 0.034
(0.006,0.032) (-0.001,0.072) (-0.039,0.107)

differences no 0.006 -0.011 0.002
(-0.004,0.016) (-0.046,0.023) (-0.124,0.128)

differences yes 0.009 -0.024 0.031
(-0.006,0.023) (-0.058,0.010) (-0.027,0.089)

95% Confidence intervals with clustering by year in parentheses.

towards yield-price elasticities for US corn which are insignificantly different from zero, with standard
errors getting smaller. Menz and Pardey (1983) and Choi and Helmberger (1993) were not able to
rule out yield-price elasticities as large as .3. Berry and Schlenker’s (2011) unpublished results are
compatible with yield-price elasticities for US corn as large as .1. My indirect estimates suggests that
the yield-price elasticity for US corn is unlikely to be larger than .04.

5 Conclusion

Indirect estimation proves to be a useful tool in obtaining relatively precise estimates of yield-price
elasticities. Both direct and indirect estimation deliver point estimates of yield-price elasticities which
are insignificantly different from zero, but indirect estimation is considerably more precise, providing
evidence against high values of yield-price elasticities which would be compatible with the direct
estimates. My indirect estimates suggest that yield-price elasticities are quite small for major US
crops – probably no greater than .04 for corn, .11 for soybeans, and .13 for wheat.

My results indicate that yield-price elasticities as high as .25 (used in Tyner et al. (2010)) are far too
high, at least for the US. Given Scott’s (2013) estimates of long run acreage-price elasticities on the
order of .4 for US cropland, acreage responses appear to be the dominant component of crop supply
response in the long run.
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