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1 Linear Algebra

1.1 Inner product and outer product

There are two ways to multiply a vector by itself.
Suppose x is a K x 1 vector.

The inner product of a vector is the dot product of a vector with itself, or the sum of squares of its

elements:
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Note that the inner product involves multiplying a 1 x K vector times a K x 1 vector, so it is 1 x 1 —
a scalar.

The outer product of a vector flips the order of multiplication:
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The outer product is a K x 1 vector times a 1 x K vector, so it results in a K x K matrix.

1.2 Derivatives with matrices and vectors

It is helpful to know some rules for how to do differentiation with matrices and vectors.
First, we should define what it means to take a derivative with respect to a vector.
Let f (x) be a scalar-valued function of the K x 1 vector x.

The derivative of f (x) with respect to x is defined as follows:
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where xj, is the kth element of x. Notice that we say that the derivative of a scalar with respect to a
column vector is a row vector. We can also define derivatives with respect to vectors in the other way
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— i.e., we could say that the resulting derivative is a column vector. It’s not conceptually important
which way we define it; it would just change the transposing in some of the following results, and
we have to be careful when the function we’re taking the derivative of is vector-valued because one
dimension will refer to the function outputs and the other dimension will refer to the function inputs.

If f (x) is a vector-valued function with dimension J x 1, then we define its derivative with respect to
the K x 1 vector x as follows:
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noting that dfi(:) is a J x K matrix.
Now, let’s turn to the following rules:
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where a and x are K x 1 vectors, and A is a K x K matrix. Note that if A’ is a symmetric matrix,
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Notice that
K
a'x=a1x1+ a2+ ... +agrrx = Zakxk.
k=1

From this formula, it is clear that ‘éaT/: = ay. Therefore, from the definition of the derivative above
(with f (x) = a’x) we have
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Notice that Ax is a K x 1 vector. Also notice that we can write
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where a; refers to the kth row of A. In this case, we can apply the definition of
conclude that
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Rule 3: dm{;% =(A+A)x

Notice that ' Ax is a 1 x K vector times a K x K matrix times a K x 1 vector, so it is a scalar.

Let’s use a change in variables. Define u (x) = A’x, and consider

du(x)z do'Az
de dx

Taking the total derivative, we have
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Using Rule 1, %xm) = u’. Using Rule 2, dL;E{x) = % = A’. Thus,
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which is equal to 2Ax if A is a symmetric matrix.
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