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Introduction

Why dynamic estimation? External validity

I Famous example: Hendel and Nevo’s (2006) estimation of laundry
detergent demand

I The long-run demand elasticity for laundry detergent might be zero
(or very close)

I If detergent goes on sale periodically, we might see a nonzero
short-run elasticity (perhaps even a large one) as customers might
purchase during the sales and store the detergent.

I Dynamic estimation typically involves estimating the primitives of
decision makers’ objective functions. We might estimate the model
using short-run variation, but once we know the decision maker’s
objective function, we could simulate a response to long-run variation.
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Introduction

Why are dynamics difficult?

I The computational burden of solving dynamic problems blows up as
the state space gets large. With standard dynamic estimation
techniques, this is especially problematic, for estimation may involve
solving the dynamic problem many times.

I Serially correlated unobservables and unobserved heterogeneity (easy
to confuse with state dependence)

I Modeling expectations

I Solving for equilibria, multiplicity (dynamic games)
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Introduction

Outline

I Introduction to dynamic estimation: Rust (1987)

I Conditional choice probabilities: Hotz and Miller (1993)

I Euler equation estimation: Scott (2014)
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Rust (1987) and NFP estimation

"Optimal Replacement of GMC Bus Engines:
An Empirical Model of Harold Zurcher"

John Rust (1987)
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Rust (1987) and NFP estimation

The “application”

I The decision maker decides whether replace bus engines or not,
minimizing expected discounted cost

I The trade-off: engine replacement is costly, but with increased use,
the probability of a very costly breakdown increases

I Single agent setting: prices are exogenous, no externalities across
buses
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Rust (1987) and NFP estimation

Model, part I

I state variable: xt is the bus engine’s mileage
I For computational reasons, Rust discretizes the state space into 90

intervals.

I Action it ∈ {0, 1}, where
I it = 1 - replace the engine,
I it = 0 - keep the engine and perform normal maintenance.
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Rust (1987) and NFP estimation

Model, part II

I per-period profit function:

π (it , xt , θ1) =
{
−c (xt , θ1) + εt (0) if it = 0
− (RC − c (0, θ1)) + εt (1) if it = 1

where
I c (xt , θ1) - regular maintenance costs (including expected breakdown

costs),
I RC - the net costs of replacing an engine,
I ε - payoff shocks.

I xt is observable to both agent and econometrician,
but ε is only observable to the agent.

I ε is necessary for a coherent model, for sometimes we observe the
agent making different decisions for the same value of x .
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Rust (1987) and NFP estimation

Model, part III

I Can define value function using Bellman equation:

Vθ (xt , εt) = max
i

[π (i , xt , θ) + βEVθ (xt , εt , it)]

where

EVθ (xt , εt , it) =
ˆ

Vθ (y , η) p (dy , dη|xt , εt , it , θ2, θ3)
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Rust (1987) and NFP estimation

Parameters

I θ1 - parameters of cost function
I θ2 - parameters of distribution of ε (these will be assumed/normalized

away)
I θ3 - parameters of x -state transition function
I RC - replacement cost
I discount factor β will be imputed (more on this later)
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Rust (1987) and NFP estimation

Conditional Independence

Conditional Independence Assumption
The transition density of the controlled process {xt , εt} factors as:

p (xt+1, εt+1|xt , εt , it , θ2, θ3) = q (εt+1|xt+1, θ2) p (xt+1|xt , it , θ3)

I CI assumption is very powerful: it means we don’t have to treat εt as
a state variable, which would be very difficult since it’s unobserved.

I While it is possible to allow the distribution of εt+1 to depend on
xt+1, authors (including Rust) typically assume that any conditionally
independent error terms are also identically distributed over time.
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Rust (1987) and NFP estimation

Theorem 1 preview

I Assumption CI has two powerful implications:
I We can write EVθ (xt , it) instead of EVθ (xt , εt , it),
I We can consider a Bellman equation for Vθ (xt), which is

computationally simpler than the Bellman equation for Vθ (xt , εt).
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Rust (1987) and NFP estimation

Theorem 1
Theorem 1
Given CI,

P (i |x , θ) = ∂

∂π (x , i , θ1)W (π (x , θ1) + βEVθ (x) |x , θ2)

and EVθ is the unique fixed point of the contraction mapping:

EVθ (x , i) =
ˆ

y
W (π (y , θ1) + βEVθ (y) |y , θ2) p (dy |x , i , θ3)

where
I P (i |x , θ) is the probability of action i conditional on state x
I W (·|x , θ2) is the surplus function:

W (v |x , θ2) ≡
ˆ
ε
max

i
[v (i) + ε (i)] q (dε|x , θ2)
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Rust (1987) and NFP estimation

Theorem 1 example: logit shocks
I vθ (x , i) ≡ π (x , i , θ1) + βEVθ (x , i) – the conditional value function.
I Suppose that ε (i) is distributed independenly across i with

Pr (ε (i) ≤ ε0) = e−e−ε0 – logit shocks. Then,

W (v (x)) =
´
maxi [v (x , i) + ε (i)]

∏
i e−ε(i)e−e−ε(i)dε

= ln (
∑

i exp (v (x , i))) + γ

where γ ≈ .577216 is Euler’s gamma.
I It is then easy to derive expressions for conditional choice probabilities:

P (i |x , θ) = exp (vθ (x , i))∑
i′ exp (vθ (x , i ′))

I The conditional value function plays the same role as a static utility function
when computing choice probabilities.
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Rust (1987) and NFP estimation

Some details

I He assumes ε is i.i.d with an extreme value type 1 distribution, and
normalizes its mean to 0 and variance to π2/6 (i.e., the case on the
previous slide).

I Transitions on observable state:

p (xt+1 − xt = 0|, xt , it , θ3) = θ30
p (xt+1 − xt = 1|, xt , it , θ3) = θ31
p (xt+1 − xt = 2|, xt , it , θ3) = 1− θ30 − θ31

I He tries several different specifications for the cost function and
favors a linear form:

c (x , θ1) = θ11x .
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Rust (1987) and NFP estimation

Nested Fixed Point Estimation

I Rust first considers a case with a closed-form expression for the value
function, but this calls for restrictive assumptions on how mileage
evolves. His nested fixed point estimation approach, however, is
applicable quite generally.

I Basic idea: to evaluate objective function (likelihood) at a given θ, we
should solve the value function for that θ
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Rust (1987) and NFP estimation

Nested Fixed Point Estimation
Steps:
1. Impute a value of the discount factor β

2. Estimate θ3 – the transition function for x – which can be done
without the behavioral model

3. Inner loop: search over (θ1,RC) to maximize likelihood function.
When evaluating the likelihood function for each candidate value of
(θ1,RC):
3.1 Find the fixed point of the the Bellman equation for (β, θ1, θ3,RC).

Iteration would work, but Rust uses a faster approach.
3.2 Using expression for conditional choice probabilities, evaluate likelihood:

T∏
t=1

P (it |xt , θ) p (xt |xt−1, it−1, θ3)
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Rust (1987) and NFP estimation

Estimates
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Rust (1987) and NFP estimation

Discount factor

I While Rust finds a better fit for β = .9999 than β = 0, he finds that
high levels of β basically lead to the same level of the likelihood
function.

I Furthermore, the discount factor is non-parametrically non-identified.
Note: He loses ability to reject β = 0 for more flexible cost function
specifications.
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Rust (1987) and NFP estimation

Discount factor

20 / 34



Rust (1987) and NFP estimation

Application
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Hotz and Miller (1993) and CCPs

"Conditional Choice Probabilities and the
Estimation of Dynamic Models"

Hotz and Miller (1993)

22 / 34



Hotz and Miller (1993) and CCPs

Motivation

I A disadvantage of Rust’s approach is that it can be computationally
intensive

I With a richer state space, solving value function (inner fixed point) can
take a very long time, which means estimation will take a very, very
long time.

I Hotz and Miller’s idea is to use observable data to form an estimate
of (differences in) the value function from conditional choice
probabilities (CCP’s)

I The central challenge of dynamic estimation is computing
continuation values. In Rust, they are computed by solving the
dynamic problem. With Hotz-Miller (or the CCP approach more
broadly), we “measure” continuation values using a function of CCP’s.

23 / 34



Hotz and Miller (1993) and CCPs

Notation

I actions a or j ∈ J , states x ∈ X
I with finite state space, state transition matrix can be represented by
|X | × |X | matrices Fj (one matrix for each action)

I payoffs πj (x) + εj

I distribution function G for idiosyncratic shocks ε
I conditional value function vj (x) = πj (x) + βFjV ,

vj denotes |X | × 1 vector across states
I ex ante value function V (x) =

´
maxj {vj (x) + εj} dG (ε),

V denotes |X | × 1 vector across states
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Hotz and Miller (1993) and CCPs

Rust’s Theorem 1: Values to CCP’s

I In Rust (1987), CCPs can be derived from the value function:

pj (x) = ∂

∂πj (x)W
(
π (x) + βE

[
V
(
x ′
)
|x , j

])
where W (u) =

´
maxj {uj + εj} dG (ε) is the surplus function.

I For the logit case:

pj (x) = exp (vj (x))∑
j′∈J exp

(
vj′ (x)

)
where the conditional value function for action j in state x is

vj (x) ≡ πj (x) + βE
[
V
(
x ′
)
|x , j

]
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Hotz and Miller (1993) and CCPs

HM’s Proposition 1: CCP’s to Values

I Notice that CCP’s are unchanged by subtracting some constant from
every conditional value. Thus, consider

Dj,0v (x) ≡ vj (x)− v0 (x)

where 0 denotes some reference action.

I Let Q : R|I|−1 → ∆|I| be the mapping from the differences in
conditional values to CCP’s.

I Note: we’re taking for granted that the distribution of ε is identical
across states, otherwise Q would be different for different x .

Hotz-Miller Inversion
Q is invertible.

26 / 34



Hotz and Miller (1993) and CCPs

HM inversion with logit errors
I Again, let’s consider the case of where ε is i.i.d. extreme value type I.
I Expression for CCP’s:

pj (x) = exp (vj (x))∑
j′∈J exp (vj (x)) .

I The HM inversion follows by taking logs and differencing across
actions:

ln pj (x)− ln p0 (x) = vj (x)− v0 (x)

I Thus, in the logit case

Q−1
j (p) = ln pj − ln p0

I From now on, I will use φ to denote Q−1.
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Hotz and Miller (1993) and CCPs

Arcidiacono and Miller’s Lemma
An equivalent result to the HM inversion was introduced by Arcidiacono
and Miller (2011). It’s worth introducing here because it makes everything
from now on much simpler and more elegant.

Arcidiacono Miller Lemma
For any action-state pair (a, x), there exists a function ψ such that

V (x) = va (x) + ψa (p (x))

Proof:

V (x) =
´
maxj {vj (x) + εj} dG (εj)

=
´
maxj {vj (x)− va (x) + εj} dG (εj)− va (x)
´
maxj {φja (p (x)) + εj} dG (εj)− va (x)

Letting ψa (p (x)) =
´
maxj {φja (p (x)) + εj} dG (εj) completes the proof
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Hotz and Miller (1993) and CCPs

Important relationships
I The Hotz-Miller Inversion allows us to map from CCP’s to differences

in conditional value functions:

φja (p (x)) = vj (x)− va (x)

I The Arcidiacono and Miller Lemma allows us to relate ex ante and
conditional value functions:

V (x) = vj (x) + ψj (p (x))

I For the logit case:
φja (p (x)) = ln (pj (x))− ln (pa (x))

ψj (p (x)) = − ln (pj (x)) + γ

where γ is Euler’s gamma
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Hotz and Miller (1993) and CCPs

Estimation example: finite state space I
I Let’s suppose that X is a finite state space. Furthermore, let’s

“normalize” the payoffs for a reference action π0 (x) = 0 for all x .
I We’ll discuss soon whether this should really be called a

“normalization”

I Using vector notation, recall the definition of the conditional value
function for the reference action:

v0 = π0 + βF0V

v0 = βF0V

I Using the Arcidiacono-Miller Lemma,

V − ψ0 (p) = βF0V
⇒

V = (I − βF0)−1 ψ0 (p)
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Hotz and Miller (1993) and CCPs

Estimation example: finite state space II

I Now we have an expression for the ex ante value function that only
depends on objects we can estimate in a first stage:

V = (I − βF0)−1 ψ0 (p)

I To estimate the utility function for the other actions,

vj = πj + βFjV

V − ψj (p) = πj + βFjV

πj = −ψj (p) + (I − βFj) V

πj = −ψj (p) + (I − βFj) (I − βF0)−1 ψ0 (p)
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Hotz and Miller (1993) and CCPs

Identification of Models I

I If we run through the above argument with π0 fixed to an arbitrary
vector π̃0 rather than 0, we will arrive at the following:

πj = Aaπ̃0 + bj

where Aa and ba depend only on things we can estimate in a first
stage:

Aj = (1− βFj) (1− βF0)−1

bj = Ajψ0 (p)− ψj (p)

I We can plug in any value for π̃0, and each value will lead to a
different utility function (different values for πj). Each of those utility
functions will be perfectly consistent with the CCP’s we observe.
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Hotz and Miller (1993) and CCPs

Identification of Models II

I Another way to see that the utility function is under-identified: If
there are |X | states and |J | actions, the utility function has |X | |J |
parameters. However, there are only |X | (|J | − 1) linearly independent
choice probabilities in the data, so we have to restrict the utility
function for identification.

I Magnac and Thesmar (2002) make this point as part of their broader
characterization of identification of DDC models. Their main result
says that we can specify a vector of utilities for the reference action
π̃, a distribution for the idiosycratic shocks G , and a discount factor,
and we will be able to find a model rationalizing the CCPs that
features (π̃, β,G).
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Hotz and Miller (1993) and CCPs

Identification of Counterfactuals

I Note that imposing a restriction like ∀x : π0 (x) = 0 is NOT a
normalization in the traditional sense. If we were talking about a
static normalization, each x would represent a different utility
function, and π0 (x) = 0 would simply be a level normalization.
However, in a dynamic model, the payoffs in one state affect the
incentives in other states, so this is a substantive restriction.

I What is less clear a priori is whether these restrictions matter for
counterfactuals. It turns out that some (but not all!) counterfactuals
ARE identified, in spite of the under-identification of the utility
function. What this means is that whatever value π̃0 we impose for
the reference action, the model will not only rationalize the observed
CCP’s but also predict the same counterfactual CCP’s. Kalouptsidi,
Scott, and Souza-Rodrigues (2016) sort out when counterfactuals of
DDC models are identified and when they are not.

34 / 34


	Introduction
	Rust (1987) and NFP estimation
	Hotz and Miller (1993) and CCPs

